Transverse impact damage and axial compression failure of square braided CFRP/PMI sandwich composite beams

2021 ◽  
Vol 162 ◽  
pp. 107547
Author(s):  
Zhongxiang Pan ◽  
Wenying Hu ◽  
Mingling Wang ◽  
Zhenyu Wu ◽  
Zhiping Ying ◽  
...  
2019 ◽  
Vol 29 (5) ◽  
pp. 715-747
Author(s):  
Meiqi Hu ◽  
Shengkai Liu ◽  
Junjie Zhang ◽  
Lei Wang ◽  
Baozhong Sun ◽  
...  

Three-dimensional braided composite materials have been widely applied to engineering structure manufacturing. It is of a great importance to characterize the impact damage of the three-dimensional braided composite under various temperatures for optimizing the engineering structure. Here we conducted transverse impact deformation and damage of three-dimensional braided composite beams with different braiding angles at room and elevated temperatures. A split Hopkinson pressure bar with a heating device combined with high-speed camera was employed to test multiple transverse impact behaviors and to record the impact deformation developments. The results indicated that failure load, initial modulus, and energy absorption decreased with the increase of temperature, whereas the deformation increased slightly with elevated temperatures. We found that the impact brittle damages occurred earlier and the local adiabatic temperature raised higher when the temperature is lower than the glass transition temperature (Tg) of epoxy resin. While above the Tg, the impact ductile damages occurred later and the local temperature raised lower. The thermal stress distribution along the braiding yarn leads to cracks propagation in yarn direction. Part of the impact energy absorptions converted into thermal energy. In addition, the beam with larger braiding angle has high damage tolerance and crack propagation resistance.


2013 ◽  
Vol 710 ◽  
pp. 136-141
Author(s):  
Li Jun Wei ◽  
Fang Lue Huang ◽  
Hong Peng Li

Sandwich composite laminates structure is a classic application of composite material on actual aircraft structural. Dealing with low-velocity impact damage and residual compressive strength of sandwich composite laminates, explicit finite element method of ABAQUS/Explicit software was adopted to simulate low-velocity impact and compression process. Impact response and invalidation on compression between sandwich composite laminates with different core materials and regular composite laminates were compared. The simulation results indicated that softer core materials can absorb more impact energy, reduce the structure damage and enhance the residual compressive strength after impact.


2018 ◽  
Vol 18 (1) ◽  
pp. 318-333 ◽  
Author(s):  
Aggelos G Poulimenos ◽  
John S Sakellariou

Oftentimes, the complexity in manufacturing composite materials leads to corresponding structures which although they may have the same design specifications they are not identical. Thus, composite parts manufactured in the same production line present differences in their dynamics which combined with additional uncertainties due to different operating conditions may lead to the complete concealment of effects caused by small, incipient, damages making their detection highly challenging. This damage detection problem in nominally identical composite structures is pursued in this study through a novel data-based response-only methodology that is founded on the autoregressive with exogenous (ARX) excitation parametric representation of the transmittance function between vibration measurements at two different locations on the structure. This is a statistical time series methodology within which two schemes are formulated. In the first, a single-reference transmittance model representing the healthy structure is employed, while multiple transmittance models from a sample of available healthy structures are used in the second. The model residual signal constitutes for both schemes the damage detection characteristic quantity that is used in appropriate hypothesis testing procedures with the likelihood ratio test. The methodology is experimentally assessed via damage detection for a population of composite beams which are manufactured in the same production line representing the half of the tail of a twin-boom unmanned aerial vehicle. The damage detection results demonstrate the superiority of the multiple transmittance models based scheme that may effectively detect damages under significant manufacturing variability and varying boundary conditions.


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6689
Author(s):  
David I. Gillespie ◽  
Andrew W. Hamilton ◽  
Robert C. Atkinson ◽  
Xavier Bellekens ◽  
Craig Michie ◽  
...  

Sandwich panels consisting of two Carbon Fibre Reinforced Polymer (CFRP) outer skins and an aluminium honeycomb core are a common structure of surfaces on commercial aircraft due to the beneficial strength–weight ratio. Mechanical defects such as a crushed honeycomb core, dis-bonds and delaminations in the outer skins and in the core occur routinely under normal use and are repaired during aerospace Maintenance, Repair and Overhaul (MRO) processes. Current practices rely heavily on manual inspection where it is possible minor defects are not identified prior to primary repair and are only addressed after initial repairs intensify the defects due to thermal expansion during high temperature curing. This paper reports on the development and characterisation of a technique based on conductive thermography implemented using an array of single point temperature sensors mounted on one surface of the panel and the concomitant induced thermal profile generated by a thermal stimulus on the opposing surface to identify such defects. Defects are classified by analysing the differential conduction of thermal energy profiles across the surface of the panel. Results indicate that crushed core and impact damage are detectable using a stepped temperature profile of 80 ∘C The method is amenable to integration within the existing drying cycle stage and reduces the costs of executing the overall process in terms of time-to-repair and manual effort.


Sign in / Sign up

Export Citation Format

Share Document