The attenuation mechanism of CFRP repaired corroded marine pipelines based on experiments and FEM

2021 ◽  
Vol 169 ◽  
pp. 108469
Author(s):  
Yu Zhang ◽  
Zhuangzhuang Liu ◽  
Jianhang Xin ◽  
Yao Wang ◽  
Caiying Zhang ◽  
...  
2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Sergey Osipov ◽  
Georgiy Stenchikov ◽  
Kostas Tsigaridis ◽  
Allegra N. LeGrande ◽  
Susanne E. Bauer ◽  
...  

AbstractSupervolcano eruptions have occurred throughout Earth’s history and have major environmental impacts. These impacts are mostly associated with the attenuation of visible sunlight by stratospheric sulfate aerosols, which causes cooling and deceleration of the water cycle. Supereruptions have been assumed to cause so-called volcanic winters that act as primary evolutionary factors through ecosystem disruption and famine, however, winter conditions alone may not be sufficient to cause such disruption. Here we use Earth system model simulations to show that stratospheric sulfur emissions from the Toba supereruption 74,000 years ago caused severe stratospheric ozone loss through a radiation attenuation mechanism that only moderately depends on the emission magnitude. The Toba plume strongly inhibited oxygen photolysis, suppressing ozone formation in the tropics, where exceptionally depleted ozone conditions persisted for over a year. This effect, when combined with volcanic winter in the extra-tropics, can account for the impacts of supereruptions on ecosystems and humanity.


1982 ◽  
Vol 72 (1) ◽  
pp. 129-149
Author(s):  
S. W. Roecker ◽  
B. Tucker ◽  
J. King ◽  
D. Hatzfeld

abstract Digital recordings of microearthquake codas from shallow and intermediate depth earthquakes in the Hindu Kush region of Afghanistan were used to determine the attenuation factors of the S-wave coda (Qc) and primary S waves (Qβ). An anomalously rapid decay of the coda shortly after the S-wave arrival, observed also in a study of coda in central Asia by Rautian and Khalturin (1978), seems to be due primarily to depth-dependent variations in Qc. In particular, we deduce the average Qc in the crust and uppermost mantle (<100-km depth) is approximately four times lower than the deeper mantle (<400-km depth) over a wide frequency range (0.4 to 24 Hz). Further, while Qc generally increases with frequency at any depth, the degree of frequency dependence of Qc depends on depth. Except at the highest frequency studied here (∼48 Hz), the magnitude of Qc at a particular frequency increases with depth while its frequency dependence decreases. For similar depths, determinations of Qβ and Qc agree, suggesting a common wave composition and attenuation mechanism for S waves and codas. Comparison of these determinations of Qc in Afghanistan with those in other parts of the world shows that the degree of frequency dependence of Qc correlates with the expected regional heterogeneity. Such a correlation supports the prejudice that Qc is primarily influenced by scattering and suggests that tectonic processes such as folding and faulting are instrumental in creating scattering environments.


2021 ◽  
pp. 21-25
Author(s):  
О.M. Petchenko ◽  
G.О. Petchenko ◽  
S.M. Boiko ◽  
А.S. Litvinenko

The dependences of the absorption α and the ultrasound velocity in LiF single crystals with residual deformation ε = 0.65% at 300 K in the range of radiation doses 0...1057 R were studied using the acoustic pulse echo method at a frequency of 7.5 MHz. Based on the results of measurements of the acoustic characteristics, the absolute values of the parameters of the dislocation structure – the average effective length of the dislocation loop L and the dislocation density Λ and their dependences on the irradiation time are determined. The calculated characteristics are compared with the previously obtained results for the high-frequency branch of the damped dislocation resonance and using the selective etching method. The revealed noticeable discrepancy in the values of these parameters is explained by the impossibility of describing a single attenuation mechanism for acoustic measurements carried out in a wide frequency range.


Geophysics ◽  
2015 ◽  
Vol 80 (2) ◽  
pp. A51-A56 ◽  
Author(s):  
J. Germán Rubino ◽  
Gabriel A. Castromán ◽  
Tobias M. Müller ◽  
Leonardo B. Monachesi ◽  
Fabio I. Zyserman ◽  
...  

Numerical simulations of seismic wave propagation in fractured media are often performed in the framework of the linear slip theory (LST). Therein, fractures are represented as interfaces and their mechanical properties are characterized through a compliance matrix. This theory has been extended to account for energy dissipation due to viscous friction within fluid-filled fractures by using complex-valued frequency-dependent compliances. This is, however, not fully adequate for fractured porous rocks in which wave-induced fluid flow (WIFF) between fractures and host rock constitutes a predominant seismic attenuation mechanism. In this letter, we develop an approach to incorporate WIFF effects directly into the LST for a 1D system via a complex-valued, frequency-dependent fracture compliance. The methodology is validated for a medium permeated by regularly distributed planar fractures, for which an analytical expression for the complex-valued normal compliance is determined in the framework of quasistatic poroelasticity. There is good agreement between synthetic seismograms generated using the proposed recipe and those obtained from comprehensive, but computationally demanding, poroelastic simulations.


Geophysics ◽  
2016 ◽  
Vol 81 (2) ◽  
pp. D141-D153 ◽  
Author(s):  
Jun Matsushima ◽  
Makoto Suzuki ◽  
Yoshibumi Kato ◽  
Shuichi Rokugawa

The presence of partially frozen liquid in the pore spaces of porous materials has significant effects on elastic wave propagation. Although the characterization of partially frozen systems using velocity information has been well developed, application of the attenuation information is limited because the attenuation mechanisms in partially frozen systems are poorly understood. We have conducted ultrasonic wave transmission measurements with changing temperatures from 0°C to [Formula: see text] to estimate the effect of partially frozen liquids grown in unconsolidated (unconsolidated sediment) and consolidated (synthetic porous rock) materials on the velocity and attenuation of P- and S-waves. Our experimental results determined that the existence of partially frozen liquid in the unconsolidated and consolidated materials increases the velocity and attenuation for temperatures of 0°C to around the freezing point (i.e., [Formula: see text]), thus experimentally validating the unintuitive observations of high velocity and high attenuation. We interpreted the differences in velocity-versus-temperature curves as both the difference in inherent stiffness between the matrix of the consolidated material and the ice frame of the partially frozen unconsolidated material and the microscale ice distribution in pore spaces. We have also attributed the difference in the attenuation-versus-temperature curves in the unconsolidated and consolidated materials between the P- and S-waves to the difference of attenuation mechanism between the P- and S-waves. Our findings can be used for interpreting the velocity and attenuation results from the sonic logging measurements.


2014 ◽  
Vol 580-583 ◽  
pp. 268-272
Author(s):  
Xue Yong Xu ◽  
Sheng Jie Di ◽  
Wan Qiang Cheng ◽  
Wei Li ◽  
Wen Bo Du

Calcareous sand is a special marine geotechnical medium that exhibits interesting physical and mechanical properties resulting from its composition and structure. In the current paper, the blasting compression wave (P-wave) attenuation mechanism of calcareous sand under explosion was studied through explosion experiments. The decay law of the P-wave was obtained based on the earth pressure at different distances from the blast center. The results show that, the broken, compress, and damage zones were formed under the effect of blasting load, many particles were broken near the blasting zone. Calcareous sand exhibits strong absorption and attenuation effects on the P-wave because of its particle breakage characteristics.


Sign in / Sign up

Export Citation Format

Share Document