scholarly journals Simulations of local heat islands in Zürich with coupled CFD and building energy models

Urban Climate ◽  
2018 ◽  
Vol 24 ◽  
pp. 340-359 ◽  
Author(s):  
Jonas Allegrini ◽  
Jan Carmeliet
Author(s):  
Germán Ramos Ruiz ◽  
Vicente Gutierrez González ◽  
Eva Lucas Segarra ◽  
Germán Campos Gordillo ◽  
Carlos Fernandez Bandera

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1187
Author(s):  
Vicente Gutiérrez González ◽  
Germán Ramos Ruiz ◽  
Carlos Fernández Bandera

The need to reduce energy consumption in buildings is an urgent task. Increasing the use of calibrated building energy models (BEM) could accelerate this need. The calibration process of these models is a highly under-determined problem that normally yields multiple solutions. Among the uncertainties of calibration, the weather file has a primary position. The objective of this paper is to provide a methodology for selecting the optimal weather file when an on-site weather station with local sensors is available and what is the alternative option when it is not and a mathematically evaluation has to be done with sensors from nearby stations (third-party providers). We provide a quality assessment of models based on the Coefficient of Variation of the Root Mean Square Error (CV(RMSE)) and the Square Pearson Correlation Coefficient (R2). The research was developed on a control experiment conducted by Annex 58 and a previous calibration study. This is based on the results obtained with the study case based on the data provided by their N2 house.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3299
Author(s):  
Eva Lucas Segarra ◽  
Germán Ramos Ruiz ◽  
Carlos Fernández Bandera

Accurate load forecasting in buildings plays an important role for grid operators, demand response aggregators, building energy managers, owners, customers, etc. Probabilistic load forecasting (PLF) becomes essential to understand and manage the building’s energy-saving potential. This research explains a methodology to optimize the results of a PLF using a daily characterization of the load forecast. The load forecast provided by a calibrated white-box model and a real weather forecast was classified and hierarchically selected to perform a kernel density estimation (KDE) using only similar days from the database characterized quantitatively and qualitatively. A real case study is presented to show the methodology using an office building located in Pamplona, Spain. The building monitoring, both inside—thermal sensors—and outside—weather station—is key when implementing this PLF optimization technique. The results showed that thanks to this daily characterization, it is possible to optimize the accuracy of the probabilistic load forecasting, reaching values close to 100% in some cases. In addition, the methodology explained is scalable and can be used in the initial stages of its implementation, improving the values obtained daily as the database increases with the information of each new day.


Author(s):  
Mohammed Bakkali ◽  
Yasunobu Ashie

In our growing cities, climate change and energy related uncertainties are of great concern. The impact of the Urban Heat Island on comfort, health and the way we use energy still requires further clarification. The outdoor-indoor energy balance model (3D-City Irradiance) presented in this article was developed so as to address these issues. The effects of view factors between urban surfaces on three-dimensional radiation and the effects of fully integrated outdoor-indoor energy balance schemes on heat islands and building indoor thermal loads could be included within different building blocks at a resolution of several metres. The model operated under the ‘stand alone’ mode. It was tested using the Building Energy Simulation Test (BESTest) which demonstrated good levels of agreement for diurnal and seasonal simulations.


2015 ◽  
Vol 5 (2) ◽  
pp. 29-36 ◽  
Author(s):  
I. Giurca

Abstract The article presents aspects related to the calculation of heat loss through the pipes of the interior central heating system. The purpose of the article is to detail the local heat losses in case of central heating systems. Based on the conclusions of the article, we propose the modification of the calculation methodology related to the building energy audit.


Sign in / Sign up

Export Citation Format

Share Document