Quantitative outdoor thermal comfort assessment of street: A case in a warm and humid climate of India

Urban Climate ◽  
2020 ◽  
Vol 34 ◽  
pp. 100718
Author(s):  
Brinda Deevi ◽  
Faiz Ahmed Chundeli
2018 ◽  
Vol 3 (8) ◽  
pp. 1-11
Author(s):  
Sharifah Khalizah Syed Othman Thani ◽  
Nik Hanita Nik Mohamad ◽  
Sabrina Idilfitri

This paper discusses a conceptual review of sustainable landscape design approach as mitigating strategies to modify urban temperature in a hot- humid climate.The amelioration of urban temperature through landscape approach can be achieved by incorporating sustainable landscape design practices via the interplay of natural vegetation in the hot-humid tropics. The findings of this paper are hoped to guide the practitioners in landscape architecture, policy makers and urban designers to incorporate sustainable landscape design approach towards improving outdoor thermal comfort; thus providing a better quality of life. Keywords: Landscape design principles; outdoor thermal comfort; urban heat island; hot-humid climate eISSN 2514-751X © 2018. The Authors. Published for AMER ABRA cE-Bs by e-International Publishing House, Ltd., UK. This is an open-access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer–review under responsibility of AMER (Association of Malaysian Environment-Behaviour Researchers), ABRA (Association of Behavioural Researchers on Asians) and cE-Bs (Centre for Environment-Behaviour Studies), Faculty of Architecture, Planning & Surveying, Universiti Teknologi MARA, Malaysia. https://doi.org/10.21834/aje-bs.v3i8.274 


Buildings ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 123 ◽  
Author(s):  
Beta Paramita ◽  
Hiroatsu Fukuda ◽  
Rendy Perdana Khidmat ◽  
Andreas Matzarakis

This paper aims to find the microclimate aspect within the building form and configuration of five low-cost apartments (henceforth rusun) in Bandung, Indonesia. There are parallel, square, and interspersed plots investigated with specific discussion on the microclimate aspects that gain human perception of outdoor thermal comfort. The microclimate prognostic model, i.e., ENVI-met, was used to determine the mean radiant temperature (Tmrt), which was then used to describe the living quality of outdoor thermal comfort, i.e., PET (physiologically equivalent temperature) in a hot-humid climate context. A parallel plot with building orientation toward north-south was found as the most beneficial building form and configuration. Somehow, the parallel plot toward the west-east orientation did not provide similar performance. Nevertheless, the square plot provided uncomfortable perception as there was an absence of building shade within the wide open space and ground cover to absorb the insolation. The interspersed plot can be considered for the building configuration because it generates more wind among other plots. The building form and configuration of rusun with passive design seems to not be able to achieve outdoor thermal comfort. The highest PET value of Model D with the square plot had PET = 41 °C (hot) while the lowest PET in Model A with the parallel plot (N-S) had PET = 34.2 °C (slightly warm).


2019 ◽  
Vol 11 (5) ◽  
pp. 1355 ◽  
Author(s):  
Shi Yin ◽  
Werner Lang ◽  
Yiqiang Xiao ◽  
Zhao Xu

Traditional shophouse neighbourhoods (TSNs) in southern China respond well to the local hot and humid climate through proper street configurations and the integration of different shading strategies. Investigating the impact of shading strategies and configurations in TSNs on outdoor thermal comfort is valuable for guiding current urban design. Three street canyons in a TSN of Guangzhou with different shading strategies were selected as basic cases for microclimatic measurement in the summer season, i.e., alleys, streets with arcade for pedestrians, and streets with high-density greenery. After validating their simulation models in ENVI-met, five groups of parametric simulations were generated by varying the canyon aspect ratio (CHW), the canyon axis orientation, arcade proportion (AHW), and the tree-covered area (TCA). Using the physiological equivalent temperature (PET) to assess the above results, the correlative impact of different variations on pedestrian’s thermal comfort and their corresponding favourable ranges are summarized. The findings suggest that: (a) only in alleys and arcade streets, the pedestrian-level thermal comfort was significantly influenced by canyon axis orientation. (b) The thermal stress for pedestrians increased dramatically when the CHW was lower than 1.5 in alleys and 0.78 in boulevards (in TCA = 89%), while the CHW higher than 1 indicated a remarkable reduction on the PET for pedestrians in arcades. (c) The pedestrians started losing the protection from shading strategy to thermal stress when the AHW was higher than 1.33 (in canyon with CHW = 1) or the TCA was lower than 33% (in canyon with CHW = 0.78).


2012 ◽  
Vol 26 (2) ◽  
pp. 146 ◽  
Author(s):  
S Sangkertadi ◽  
Reny Syafriny

This article is about development a regression equation to determine the perception of thermal comfort for pedestrians in the humid tropical climate. Methods used was field studies and questionnaires to 60 samples as respondents in Manado. Each of the respondents was asked to act as pedestrian but walked on a treadmill for 2 minutes 5 five times. They regrouped into two parts, one who walked under open-sky and another group was under the shade of trees. Measurements of climate variables include air temperature, air humidity, radiation temperature, land surface temperature and solar radiation. Measurements to the respondents were their height, weight and skin temperature. By using statistical approach it is obtained a regression equation "Y=- 6.1369 + 0.479 Adu + 0.1143 Ta + 0.0376 Trm + 0.2541 RH + 1.6793 clo". The equation was then validated by comparison with other equations of non-tropical humid climate case. It is found that the empirical regression equations of outdoor thermal comfort developed by means of field studies in a certain climatic conditions could not be applied for a wide range of climate.


2020 ◽  
Vol 15 (4) ◽  
pp. 594-606
Author(s):  
Ibrahim Rizk Hegazy ◽  
Emad Mohammed Qurnfulah

Abstract At present, the environmental quality of urban regions and outdoor spaces has turn out to be one of the main issues facing both climatologists and designers, which could be identified through their research outcomes. It is argued that the urban configuration affects the micro-climate of the urban outdoor spaces. The street’s orientation form was identified as an element, which impacts the urban environment with regards of receiving passive solar, solar radiation and reflection against urban absorption, wind flow and the possible urban cooling techniques. The key purpose of this study is to look into the urban configuration factors affecting the human thermal outdoor comfort in Jeddah city as an example of hot humid climate regions. To accomplish its aim, the research is divided to two sections. The first one illustrates the problem of the research, then generally reviews the literature associated with the outdoor human thermal comfort; in addition, it discusses the relationship between street orientation and micro-climate. The second section highlight the assessments carried out between four different orientations of urban streets from two different districts in Jeddah city, using ENVI-met software. The research adopts three environmental variables to be examined, namely air temperature, wind speed, relative humidity together with pedestrian thermal comfort as indicators for predicted mean vote, during summer and winter seasons. The outcomes of the comparison assist to identify decisions related street networks to achieve the desirable human outdoor thermal comfort in such an urban environment.


2014 ◽  
Vol 935 ◽  
pp. 273-276 ◽  
Author(s):  
Beta Paramita ◽  
Hiroatsu Fukuda

High density of population and vertical buildings seems to be the only aspect fit to the concept for city in the developing country. The vertical housings then become a matter of necessity in high density area, in which the building groups themselves significantly contribute to microclimate at urban scales. This study is going to give descriptions of outdoor thermal comfort of public housing in Bandung by means its correlation between urban forms and mean radiant temperature. A number of simulations have used ENVI-met to reveal a better urban form which addresses the role of urban physics in the study of outdoor thermal comfort in a hot humid climate area.


Author(s):  
Khairani Ayu Rizqi ◽  
Budi Prayitno

Population growth in Indonesia is not offset by the construction of urban facilities and infrastructure and the improvement of urban services. In densely populated urban areas with narrow residential conditions, the demand for shelter is higher, causing an increase in the price of land and housing. One of the efforts in responding to this problem in the Special Capital Region of Jakarta is to build vertical residential or flats. This study aimed to determine the level of outdoor thermal comfort of Tambora flats in Jakarta, which have air temperatures ranging 26–29°C and air humidity of 76–92%. Existing flats were simulated with the Envi-MET 3.1 software, with the first stage being to determine the height of the building and material of the building, the street, and then assessing the existing outdoor thermal comfort level by inputting climatic data. Overall, the thermal comfort index values of both existing and planned model building configurations of Tambora flats and its surrounding area were at the standard level for a humid climate. Of our models, model B had the best potential to provide thermal comfort to humans in the area of the flats. In order to implement the proposed model building configuration with optimal outdoor thermal comfort in real buildings, future research should focus on a wider range of aspects, including diversity and density of buildings, and neighborhood type.


Sign in / Sign up

Export Citation Format

Share Document