Assessment of a meteorological mesoscale model's capability to simulate intra-urban thermal variability in a tropical city

Urban Climate ◽  
2021 ◽  
Vol 40 ◽  
pp. 101006
Author(s):  
Beatriz Sanchez ◽  
Matthias Roth ◽  
Andrés Simón-Moral ◽  
Alberto Martilli ◽  
Erik Velasco
Keyword(s):  
2020 ◽  
Vol 81 ◽  
pp. 1-14
Author(s):  
M Keyimu ◽  
Z Li ◽  
Y Zhao ◽  
Y Dong ◽  
B Fu ◽  
...  

Historical temperature reconstructions at high altitudes are still insufficient in southwestern China, which is considered one of the most sensitive areas to climate change in the world. Here we developed a tree ring-width chronology of Faxon fir Abies fargesii var. faxoniana at the upper timber line on Zhegu Mountain, Miyaluo Scenic Area, western Sichuan, China. The climate-tree growth relationship analysis indicated temperature as the dominant regulator on radial tree growth in this region. The reconstruction of aggregated maximum temperature (TMX) of autumn and winter for the period 1856-2016 was achieved with a linear regression model that accounted for 43.6% of the actual variability in the common time series (1954-2016). The reconstruction identified 4 warm periods and 3 cold periods. Similarities of warm and cold periods with previously published reconstructions from nearby sites indicated the reliability of our reconstruction. The significant positive correlation between TMX reconstruction and the Asian-Pacific Oscillation index and the Atlantic Multi-decadal Oscillation index suggested a linkage between large-scale climate circulations and the thermal variability at a multi-decadal scale on the western Sichuan Plateau. We also found that solar activity exerted a strong influence on decadal temperature variability in this region. The cold periods were matched well with historical large volcanic eruptions. Our results strengthen the historical climatic information in southwestern China and contribute to further understanding the regional thermal variability as well as its driving mechanism.


2018 ◽  
Vol 73 ◽  
pp. 270
Author(s):  
L.M. Helguero Santin ◽  
J.S. Córdova—agurto ◽  
L.K. Chininin-Yamo ◽  
L.A. Zeta ◽  
K. Pérez-Chuquihuanca ◽  
...  

Author(s):  
Iug Lopes ◽  
Marcos V. da Silva ◽  
Juliana M. M. de Melo ◽  
Abelardo A. de A. Montenegro ◽  
Héliton Pandorfi

ABSTRACT Spatial variability analysis of meteorological elements and precise identification of possible causes of thermal stress in poultry housing help producers in the decision making process. The objective of this study was to evaluate the internal environment of poultry houses in the downtime (sanitary void) and in the production phase, to characterize spatial thermal variability and to identify critical control points. The study was carried out in the Alluvial Valley of the Mimoso River, municipality of Pesqueira, PE, Brazil. The data of air temperature, wind speed and illuminance were recorded in November (spring season), at 155 points within each poultry facility (10 x 90 m), spaced in a 3.0 x 2.5 m grid and subjected to descriptive statistical analysis and geostatistics. There was a strong spatial dependence for the variables air temperature, wind speed and illuminance. The ranges obtained for the air temperature in the facilities were from 48.22 to 114.52 m, while for the wind speed and illuminance were less than 10 m, thus revealing the need for greater homogeneity of the studied variables and meeting of the thermal requirement of the poultry.


<em>Abstract</em>.-In this paper, we develop logistic stream temperature models for 17 selected sites in northeastern North America and evaluate the potential changes from warming climate under two scenarios (low and medium-high emissions). Classification of the magnitude of the (1) long-term (1980-2002) and (2) annual thermal regimes allowed examination of the relative spatial and temporal patterns of instream thermal variability across the 17 sites. At the regional scale, the classification identified three broad groups of rivers (cool, intermediate, and warm) reflecting geographical location and moderated by site-specific factors. The interannual classification identified four thermal year types reflecting increasing magnitude and variability in the annual thermal regime. The dominance of thermal year types and the frequency of occurrence indicated significant variability between years for all sites and within thermal regions. Under the two climate change scenarios, stream temperatures in the 17 sites are projected to increase by 2050. However, there are regional differences with intermediate and warm region rivers projected to be more affected, particularly under the medium-high emissions scenario. More significantly, the duration of weeks when temperatures exceed 20°C (taken as a threshold of thermal stress for Atlantic salmon <em>Salmo salar</em>) is projected to increase with variability in response between river groups. We comment on the ecological significance of these potential future increases in stream temperature and duration for Atlantic salmon in the region.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Grantly R. Galland ◽  
Philip A. Hastings ◽  
James J. Leichter

AbstractAs part of a broad-scale study of the biogeography of rocky reefs in the Gulf of California, Mexico (GOC), we collected a continuous 1-yr temperature time series at ~5 m water depth at 16 sites spanning 5° of latitude and ~700 km along the western boundary of the basin. Throughout the region, thermal conditions were most variable in summer with fluctuations concentrated at diurnal and semi-diurnal frequencies, likely associated with solar and wind forcing and vertical water column oscillations forced by internal waves. Temperatures in winter were less variable than in summer, and minimum temperatures also differed among sites. Thermal variability integrated across the diurnal and semi-diurnal frequency bands was greatest near the Midriff Islands in the northern GOC and decreased toward the southern sites. Diurnal variability was greater than semi-diurnal variability at 13 of the 16 sites. A statistic-of-extremes analysis indicated shortest return times for cooling events in summer, and reef organisms at many of the sites may experience anomalous 2 to 5 °C cooling events multiple times per month. The significant extent of local temperature variability may play important roles in limiting species occurrences among sites across this biogeographic region.


2019 ◽  
Vol 9 (24) ◽  
pp. 5527
Author(s):  
Miguel Garrido-Izard ◽  
Eva-Cristina Correa ◽  
José-María Requejo ◽  
Morris Villarroel ◽  
Belén Diezma

High or variable ambient temperature can affect thermal regulation in livestock, but few studies have studied thermal variability during air and road transport, partly due to the lack of tools to compare thermal data from a long time series over periods of different duration. In this study, we recorded the ear skin temperature (EST) of 11 Duroc breeder pigs (7 females and 4 males) during commercial intercontinental transport from Canada to Spain, which included both road and aircraft travel and lasted 65 h. The EST was measured using a logger placed inside the left ear. Phase space diagrams EST, that is EST time series vs. itself delayed in time, were used to quantify the variability of the time-temperature series based on the areas that included all the points in the phase space. Phase space areas were significantly higher for all the animals during air travel, almost doubling that of road transport. Using the phase spaces, we identified an event during air transport that lasted 57 min, leading to a general decrease in EST by 8 °C, with respect to the average EST (34.1 °C). We also found that thermal variability was more stable in males (F = 20.81, p = 0.0014), which were also older and heavier.


2011 ◽  
Vol 116 (D23) ◽  
pp. n/a-n/a ◽  
Author(s):  
Bernard Fontaine ◽  
Paul-Arthur Monerie ◽  
Marco Gaetani ◽  
Pascal Roucou

1997 ◽  
Vol 102 (C5) ◽  
pp. 10499-10507 ◽  
Author(s):  
Peter C. Chu ◽  
Charles R. Fralick ◽  
Steven D. Haeger ◽  
Michael J. Carron

Sign in / Sign up

Export Citation Format

Share Document