scholarly journals Fluctuating thermal environments of shallow-water rocky reefs in the Gulf of California, Mexico

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Grantly R. Galland ◽  
Philip A. Hastings ◽  
James J. Leichter

AbstractAs part of a broad-scale study of the biogeography of rocky reefs in the Gulf of California, Mexico (GOC), we collected a continuous 1-yr temperature time series at ~5 m water depth at 16 sites spanning 5° of latitude and ~700 km along the western boundary of the basin. Throughout the region, thermal conditions were most variable in summer with fluctuations concentrated at diurnal and semi-diurnal frequencies, likely associated with solar and wind forcing and vertical water column oscillations forced by internal waves. Temperatures in winter were less variable than in summer, and minimum temperatures also differed among sites. Thermal variability integrated across the diurnal and semi-diurnal frequency bands was greatest near the Midriff Islands in the northern GOC and decreased toward the southern sites. Diurnal variability was greater than semi-diurnal variability at 13 of the 16 sites. A statistic-of-extremes analysis indicated shortest return times for cooling events in summer, and reef organisms at many of the sites may experience anomalous 2 to 5 °C cooling events multiple times per month. The significant extent of local temperature variability may play important roles in limiting species occurrences among sites across this biogeographic region.

2020 ◽  
Vol 87 ◽  
pp. 102480
Author(s):  
Cong Song ◽  
Yanfeng Liu ◽  
Xiaojun Zhou ◽  
Dengjia Wang ◽  
Yingying Wang ◽  
...  

2007 ◽  
Vol 20 (9) ◽  
pp. 1882-1896 ◽  
Author(s):  
X. Gao ◽  
J. Li ◽  
S. Sorooshian

Abstract This study examines the capabilities and limitations of the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5) in predicting the precipitation and circulation features that accompanied the 2004 North American monsoon (NAM). When the model is reinitialized every 5 days to restrain the growth of modeling errors, its results for precipitation checked at subseasonal time scales (not for individual rainfall events) become comparable with ground- and satellite-based observations as well as with the NAM’s diagnostic characteristics. The modeled monthly precipitation illustrates the evolution patterns of monsoon rainfall, although it underestimates the rainfall amount and coverage area in comparison with observations. The modeled daily precipitation shows the transition from dry to wet episodes on the monsoon onset day over the Arizona–New Mexico region, and the multiday heavy rainfall (>1 mm day−1) and dry periods after the onset. All these modeling predictions agree with observed variations. The model also accurately simulated the onset and ending dates of four major moisture surges over the Gulf of California during the 2004 monsoon season. The model reproduced the strong diurnal variability of the NAM precipitation, but did not predict the observed diurnal feature of the precipitation peak’s shift from the mountains to the coast during local afternoon to late night. In general, the model is able to reproduce the major, critical patterns and dynamic variations of the NAM rainfall at intraseasonal time scales, but still includes errors in precipitation quantity, pattern, and timing. The numerical study suggests that these errors are due largely to deficiencies in the model’s cumulus convective parameterization scheme, which is responsible for the model’s precipitation generation.


2009 ◽  
Vol 5 (3) ◽  
pp. 360-363 ◽  
Author(s):  
Monica Gagliano ◽  
Walter C. Dunlap ◽  
Rocky de Nys ◽  
Martial Depczynski

The ubiquitous coenzyme Q (CoQ) is a powerful antioxidant defence against cellular oxidative damage. In fishes, differences in the isoprenoid length of CoQ and its associated antioxidant efficacy have been proposed as an adaptation to different thermal environments. Here, we examine this broad contention by a comparison of the CoQ composition and its redox status in a range of coral reef fishes. Contrary to expectations, most species possessed CoQ 8 and their hepatic redox balance was mostly found in the reduced form. These elevated concentrations of the ubiquinol antioxidant are indicative of a high level of protection required against oxidative stress. We propose that, in contrast to the current paradigm, CoQ variation in coral reef fishes is not a generalized adaptation to thermal conditions, but reflects species-specific ecological habits and physiological constraints associated with oxygen demand.


2020 ◽  
Vol 148 (2) ◽  
pp. 637-654
Author(s):  
Sergey Frolov ◽  
William Campbell ◽  
Benjamin Ruston ◽  
Craig H. Bishop ◽  
David Kuhl ◽  
...  

Abstract Coupled data assimilation (DA) provides a consistent framework for assimilating satellite observations that are sensitive to several components of the Earth system. In this paper, we focus on low-peaking infrared satellite channels that are sensitive to the lower atmosphere and Earth surface temperature (EST) over both ocean and land. Our atmospheric hybrid-4DVAR system [the Navy Global Environmental Model (NAVGEM)] is extended to include the following: 1) variability in the sea surface temperature (both diurnal variability and climatological perturbations to the ensemble members), 2) the coupled Jacobians of the radiative transfer model for the infrared sensors, and 3) the coupled covariances between the EST and the atmosphere. Our coupling approach is found to improve forecast accuracy and to provide corrections to the EST that are in balance with the atmospheric analysis. The largest impact of the coupling is found on near-surface atmospheric temperature and humidity in the tropics, but the impact extends all the way to the stratosphere. The role of each coupling element on the performance of the global atmospheric circulation model is investigated. Inclusion of variability in the sea surface temperature has the strongest positive impact on the forecast quality. Additional inclusion of the coupled Jacobian and ensemble-based coupled covariances led to further improvements in scores and to modification of the corrections to the ocean boundary layer. Coupled DA had significant impact on latent and sensible heat fluxes over land, locations of western boundary currents, and along the ice edge.


Author(s):  
Zongmin Wang ◽  
Penglei Mao ◽  
Haibo Yang ◽  
Yong Zhao ◽  
Tian He ◽  
...  

Satellite-based remote sensing technologies are utilized extensively to investigate urban thermal environments under rapid urban expansion. Current MODIS data is, however, unable to adequately represent the spatially detailed information because of its relatively coarser spatial resolution, while Landsat data can’t explore temporally the refined analysis due to the low temporal resolution. In order to resolve this situation, we used MODIS and Landsat data to generate “Landsat-like” data by using the flexible spatiotemporal data fusion method (FSDAF), and then studied spatiotemporal variation of land surface temperature (LST) and its driving factors. The results showed that 1) The estimated “Landsat-like” data have high precision; 2) By comparing 2013 and 2016 datasets, LST increases ranging from 1.8°C to 4°C were measurable in areas where the impervious surface area (ISA) increased, while LST decreases ranging from -3.52°C to -0.70°C were detected in areas where ISA decreased; 3) LST has a strongly negative relationship with the Normalized Difference Vegetation Index (NDVI), and a strongly positive relationship with Normalized Difference Built Index (NDBI) in summer; and 4) LST is well correlated with Building density (BD), in a complex conic mode, and LST may increase by 0.460°C to 0.786°C when BD increases by 0.1. Our findings can provide information useful for mitigating undesirable thermal conditions and for long-term urban thermal environmental management.


Author(s):  
Hanan Al-Khatri ◽  
Farah Al-Atrash

This chapter presents the findings of a questionnaire distributed in the Arabian Gulf region to explore the potential of utilising natural ventilation to moderate thermal conditions in residential buildings. It, additionally, explores the occupants' acceptance of the idea of applying natural ventilation when outdoor thermal environments are acceptable. Natural ventilation is a key sustainable solution to improve thermal conditions in the region considering its extreme climate, huge consumption of cooling energy, and the cultural attitude to depend on mechanical ventilation. The chapter discusses the thermal adaptation including physical or behavioural adaptation, and it sheds light on selected studies discussing similar issues. A detailed climatic analysis is presented with reference to Muscat city. Discussing the questionnaire's findings revealed high acceptance to depend on natural ventilation of around 93.7% of the participants. In addition, the possibility to depend on natural ventilation in the period from November to March, especially during daytime, was revealed.


2020 ◽  
Author(s):  
Pan Ma

<p>The risks of Emergency Room (ER) visits for cerebral infarction (CI) and intracerebral hemorrhage (ICH) is found to differ in different age groups under different climatic thermal environments. Based on CI and ICH related ER-visit records from three major hospitals in Beijing, China, from 2008 to 2012, the advanced universal thermal climate index (UTCI), was adopted in this study to assess the climatic thermal environment. Particularly, daily mean UTCI was used as a predictor for the risk of ER visits for CI and ICH. A generalized quasi-Poisson additive model combined with a distributed lag non-linear model was performed to quantify their association. The results indicated that (ⅰ) the highest growth rate of ER visits for ICH occurred in age 38 to 48, whereas an increasing ER admissions for CI maintained at age 38 to 78. (ⅱ) The frequency distribution of UTCI in Beijing peaked at -8 and 30 ℃, corresponding to moderate cold stress and moderate heat stress, respectively. (ⅲ) Correlation analysis indicated that ICH morbidity was negatively correlated with UTCI, whereas occurrence of CI showed no significant association with UTCI. (ⅳ) The estimated relative risk of ER visits corresponding to 1℃ change in UTCI, which was then stratified by age and gender, indicated that all sub-groups of ICH patients responded similarly to thermal stress. Namely, there is an immediate ICH risk (UTCI = -13℃, RR=1.35, 95% CIs: 1.11~1.63) from cold stress on the onset day, but non-significant impact from heat stress. As for CI occurrences, no effect from cold stress was identified, except for only those aged 45 to 65 were threatened by heat stress (UTCI = 38℃, RR=1.64, 95% CIs: 1.10~2.44) on lag 0~2d. </p>


2008 ◽  
Vol 21 (16) ◽  
pp. 3967-3988 ◽  
Author(s):  
J. Li ◽  
S. Sorooshian ◽  
W. Higgins ◽  
X. Gao ◽  
B. Imam ◽  
...  

Abstract Diurnal variability is an important yet poorly understood aspect of the warm-season precipitation regime over southwestern North America. In an effort to improve its understanding, diurnal variability is investigated numerically using the fifth-generation Pennsylvania State University (PSU)–NCAR Mesoscale Model (MM5). The goal herein is to determine the possible influence of spatial resolution on the diurnal cycle. The model is initialized every 48 h using the operational NCEP Eta Model 212 grid (40 km) model analysis. Model simulations are carried out at horizontal resolutions of both 9 and 3 km. Overall, the model reproduces the basic features of the diurnal cycle of rainfall over the core monsoon region of northwestern Mexico and the southwestern United States. In particular, the model captures the diurnal amplitude and phase, with heavier rainfall at high elevations along the Sierra Madre Occidental in the early afternoon that shifts to lower elevations along the west slopes in the evening. A comparison to observations (gauge and radar data) shows that the high-resolution (3 km) model generates better rainfall distributions on time scales from monthly to hourly than the coarse-resolution (9 km) model, especially along the west slopes of the Sierra Madre Occidental. The model has difficulty with nighttime rainfall along the slopes, over the Gulf of California, and over Arizona. A comparison of surface wind data from three NCAR Integrated Sounding System (ISS) stations and the Quick Scatterometer (QuikSCAT) to the model reveals a low bias in the strength of the Gulf of California low-level jet, even at high resolution. The model results indicate that outflow from convection over northwestern Mexico can modulate the low-level jet, though the extent to which these relationships occur in nature was not investigated.


2014 ◽  
Vol 1065-1069 ◽  
pp. 2927-2930 ◽  
Author(s):  
Bai Chuan Ma ◽  
Qi Sang ◽  
Ji Feng Gou

Shading provided by buildings affects outdoor thermal environments and, therefore, influences the long-term thermal comfort of people in outdoor spaces. This study conducted several field experiments to analyze the outdoor thermal conditions on urban streets in central business district (CBD) of Beijing. The RayMan model was utilized for calculating Sky view factor (SVF) and outdoor thermal comfort using meteorological data of one year period. Analytical results indicate that slightly shaded areas (SVF > 0.5) typically have highly frequent hot conditions during summer, particularly at noon; however, highly shaded locations (SVF < 0.3) generally reduce the intra-urban air temperature in winter; moderately shaded areas (0.3 < SVF < 0.5) show the advantage for balancing the hot conditions in summer and cold conditions in winter throughout whole year. Sky view factor can be used as a comprehensive and practical urban planning index at local scale, i.e. urban canyon street and residential estate. It provides a novelty method on scientific planning and sustainable development of city.


ZooKeys ◽  
2021 ◽  
Vol 1062 ◽  
pp. 177-201
Author(s):  
Imelda G. Amador-Castro ◽  
Francisco J. Fernández-Rivera Melo ◽  
Jorge Torre

San Pedro Mártir island is of high biological, ecological, and fishery importance and was declared a biosphere reserve in 2002. This island is the most oceanic in the Gulf of California, and information on its rocky reefs is scarce. The present study aimed to generate the first list of conspicuous invertebrate and fish species based on in situ observations and to examine the community structure of the shallow rocky reefs of the reserve. In addition, we estimated the ecological indicators of richness, abundance, Shannon diversity, and Pielou evenness to evaluate the conservation status of the biosphere reserve. Data were collected annually from 2007 to 2017 through 2,192 underwater SCUBA transects. A total of 35 species of invertebrates and 73 species of fish were recorded. Most of the species are widely distributed along the eastern Pacific. Overall, 64% of the species found in this study are commercially important, and 11 species have been listed as protected. The abundance of commercially important invertebrate species (i.e., the sea cucumber Isostichopus fuscus and the spiny oyster Spondylus limbatus) is decreasing, while commercially important fish species have maintained their abundance with periods of increase. The ecological indicators and the abundance and size of the commercial species indicate that the reserve is in good condition while meeting its conservation objectives.


Sign in / Sign up

Export Citation Format

Share Document