European strategy for vaccine development against infectious diseases

Vaccine ◽  
2017 ◽  
Vol 35 ◽  
pp. A20-A23 ◽  
Author(s):  
Line Matthiessen ◽  
Hannu Lång ◽  
Maria Klimathianaki ◽  
Finnian Hanrahan ◽  
Barbara Kerstiëns ◽  
...  
Biomolecules ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1072
Author(s):  
Raquel Cid ◽  
Jorge Bolívar

To date, vaccination has become one of the most effective strategies to control and reduce infectious diseases, preventing millions of deaths worldwide. The earliest vaccines were developed as live-attenuated or inactivated pathogens, and, although they still represent the most extended human vaccine types, they also face some issues, such as the potential to revert to a pathogenic form of live-attenuated formulations or the weaker immune response associated with inactivated vaccines. Advances in genetic engineering have enabled improvements in vaccine design and strategies, such as recombinant subunit vaccines, have emerged, expanding the number of diseases that can be prevented. Moreover, antigen display systems such as VLPs or those designed by nanotechnology have improved the efficacy of subunit vaccines. Platforms for the production of recombinant vaccines have also evolved from the first hosts, Escherichia coli and Saccharomyces cerevisiae, to insect or mammalian cells. Traditional bacterial and yeast systems have been improved by engineering and new systems based on plants or insect larvae have emerged as alternative, low-cost platforms. Vaccine development is still time-consuming and costly, and alternative systems that can offer cost-effective and faster processes are demanding to address infectious diseases that still do not have a treatment and to face possible future pandemics.


2011 ◽  
Vol 14 (3) ◽  
pp. 400 ◽  
Author(s):  
Ravindra B Malabadi ◽  
Advaita Ganguly ◽  
Jaime A Teixeira da Silva ◽  
Archana Parashar ◽  
Mavanur R Suresh ◽  
...  

ABSTRACT - This review highlights the advantages and current status of plant-derived vaccine development with special reference to the dengue virus. There are numerous problems involved in dengue vaccine development, and there is no vaccine against all four dengue serotypes. Dengue vaccine development using traditional approaches has not been satisfactory in terms of inducing neutralizing antibodies. Recently, these issues were addressed by showing a very good response to inducing neutralizing antibodies by plant-derived dengue vaccine antigens. This indicates the feasibility of using plant-derived vaccine antigens as a low-cost method to combat dengue and other infectious diseases. The application of new methods and strategies such as dendritic cell targeting in cancer therapy, severe acute respiratory syndrome, tuberculosis, human immune deficiency virus, and malaria might play an important role. These new methods are more efficient than traditional protocols. It is expected that in the near future, plant-derived vaccine antigens or antibodies will play an important role in the control of human infectious diseases. This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For Readers”) may comment by clicking on ABSTRACT on the issue’s contents page.


Author(s):  
Kimberly E Hanson ◽  
Angela M Caliendo ◽  
Cesar A Arias ◽  
Janet A Englund ◽  
Mary K Hayden ◽  
...  

Abstract Background The availability of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) serologic testing has rapidly increased. Current assays use a variety of technologies, measure different classes of immunoglobulin or immunoglobulin combinations, and detect antibodies directed against different portions of the virus. The overall accuracy of these tests, however, has not been well defined. The Infectious Diseases Society of America (IDSA) convened an expert panel to perform a systematic review of the coronavirus disease 2019 (COVID-19) serology literature and construct best-practice guidance related to SARS-CoV-2 serologic testing. This guideline is the fourth in a series of rapid, frequently updated COVID-19 guidelines developed by IDSA. Objective IDSA’s goal was to develop evidence-based recommendations that assist clinicians, clinical laboratories, patients, and policymakers in decisions related to the optimal use of SARS-CoV-2 serologic tests in a variety of settings. We also highlight important unmet research needs pertaining to the use of anti–SARS-CoV-2 antibody tests for diagnosis, public health surveillance, vaccine development, and the selection of convalescent plasma donors. Methods A multidisciplinary panel of infectious diseases clinicians, clinical microbiologists, and experts in systematic literature review identified and prioritized clinical questions related to the use of SARS-CoV-2 serologic tests. Grading of Recommendations Assessment, Development, and Evaluation (GRADE) methodology was used to assess the certainty of evidence and make testing recommendations. Results The panel agreed on 8 diagnostic recommendations. Conclusions Information on the clinical performance and utility of SARS-CoV-2 serologic tests is rapidly emerging. Based on available evidence, detection of anti–SARS-CoV-2 antibodies may be useful for confirming the presence of current or past infection in selected situations. The panel identified 3 potential indications for serologic testing, including (1) evaluation of patients with a high clinical suspicion for COVID-19 when molecular diagnostic testing is negative and ≥2 weeks have passed since symptom onset, (2) assessment of multisystem inflammatory syndrome in children, and (3) conducting serosurveillance studies. The certainty of available evidence supporting the use of serology for either diagnosis or epidemiology was, however, graded as very low to moderate. For the most updated version of these guidelines, please go to https://www.idsociety.org/covid19guidelines.


2020 ◽  
Vol 185 ◽  
pp. 03042
Author(s):  
Yu Fang

The Coronavirus Disease-2019 (COVID-19) pandemic has led to a critical economic crash around the globe, affecting billions of people worldwide. Without a cure, the number of cases continues to increase exponentially. Countries, including the United States, Brazil, and India, currently lead in the number of cases with numbers soaring in the millions. Immunization is crucial to preventing the spread of infectious diseases and can help a large number of individuals quickly while keeping current cases under control. Following the publication of the genome sequence of SARS-CoV-2, vaccine development has been accelerated at an unprecedented rate. 115 vaccine candidates are currently under study with the hope of finding an ideal solution and mitigating the Coronavirus incidence rate. With some vaccine candidates having more potential than others, this review focuses on the characterization of different vaccine options. The analysis of probable vaccines, including mRNA vaccines and adenovirus vaccines, is conducted, and the scientific reasoning behind the vaccines is also discussed. In this review, the latest strategy vaccine is introduced and the effective vaccines are analysed.


2019 ◽  
Vol 53 (3) ◽  
pp. 343-354 ◽  
Author(s):  
Sahil Kumar ◽  
Kiran Thakur ◽  
Bandna Sharma ◽  
Tilak Raj Bhardwaj ◽  
Deo Nandan Prasad ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Seyed Davoud Jazayeri ◽  
Hui Xuan Lim ◽  
Kamyar Shameli ◽  
Swee Keong Yeap ◽  
Chit Laa Poh

Mucosal surfaces are the first site of infection for most infectious diseases and oral vaccination can provide protection as the first line of defense. Unlike systemic administration, oral immunization can stimulate cellular and humoral immune responses at both systemic and mucosal levels to induce broad-spectrum and long-lasting immunity. Therefore, to design a successful vaccine, it is essential to stimulate the mucosal as well as systemic immune responses. Successful oral vaccines need to overcome the harsh gastrointestinal environment such as the extremely low pH, proteolytic enzymes, bile salts as well as low permeability and the low immunogenicity of vaccines. In recent years, several delivery systems and adjuvants have been developed for improving oral vaccine delivery and immunogenicity. Formulation of vaccines with nanoparticles and microparticles have been shown to improve antigen stability, availability and adjuvanticity as well as immunostimulatory capacity, target delivery and specific release. This review discusses how nanoparticles (NPs) and microparticles (MPs) as oral carriers with adjuvant characteristics can be beneficial in oral vaccine development.


2020 ◽  
Vol 7 (11) ◽  
Author(s):  
Guillaume Butler-Laporte ◽  
Devin Kreuzer ◽  
Tomoko Nakanishi ◽  
Adil Harroud ◽  
Vincenzo Forgetta ◽  
...  

Abstract Background Infectious diseases are causally related to a large array of noncommunicable diseases (NCDs). Identifying genetic determinants of infections and antibody-mediated immune responses may shed light on this relationship and provide therapeutic targets for drug and vaccine development. Methods We used the UK biobank cohort of up to 10 000 serological measurements of infectious diseases and genome-wide genotyping. We used data on 13 pathogens to define 46 phenotypes: 15 seropositivity case–control phenotypes and 31 quantitative antibody measurement phenotypes. For each of these, we performed genome-wide association studies (GWAS) using the fastGWA linear mixed model package and human leukocyte antigen (HLA) classical allele and amino acid residue associations analyses using Lasso regression for variable selection. Results We included a total of 8735 individuals for case–control phenotypes, and an average (range) of 4286 (276–8555) samples per quantitative analysis. Fourteen of the GWAS yielded a genome-wide significant (P < 5 ×10-8) locus at the major histocompatibility complex (MHC) on chromosome 6. Outside the MHC, we found a total of 60 loci, multiple associated with Epstein-Barr virus (EBV)–related NCDs (eg, RASA3, MED12L, and IRF4). FUT2 was also identified as an important gene for polyomaviridae. HLA analysis highlighted the importance of DRB1*09:01, DQB1*02:01, DQA1*01:02, and DQA1*03:01 in EBV serologies and of DRB1*15:01 in polyomaviridae. Conclusions We have identified multiple genetic variants associated with antibody immune response to 13 infections, many of which are biologically plausible therapeutic or vaccine targets. This may help prioritize future research and drug development.


Vaccine ◽  
2020 ◽  
Vol 38 (46) ◽  
pp. 7198-7200
Author(s):  
Jayanthi Wolf ◽  
Ryan Hansen ◽  
Kimberly Hassis ◽  
William Lapps ◽  
Emese Warmuth

Sign in / Sign up

Export Citation Format

Share Document