Fabrication of high frequency ZnO thin film SAW devices on silicon substrate with a diamond-like carbon buffer layer using RF magnetron sputtering

Vacuum ◽  
2008 ◽  
Vol 83 (3) ◽  
pp. 675-678 ◽  
Author(s):  
Wen-Ching Shih ◽  
Rei-Ching Huang
2007 ◽  
Vol 336-338 ◽  
pp. 567-570
Author(s):  
Chong Mu Lee ◽  
Anna Park ◽  
Young Joon Cho ◽  
Hyoun Woo Kim ◽  
Jae Gab Lee

It is very desirable to grow ZnO epitaxial films on Si substrates since Si wafers with a high quality is available and their prices are quite low. Nevertheless, it is not easy to grow ZnO films epitaxially on Si substrates directly because of formation of an amorphous SiO2 layer at the interface of ZnO and Si. A Zn film and an undoped ZnO film were deposited sequentially on an (100) Si substrate by rf magnetron sputtering. The sample was annealed at 700°C in a nitrogen atmosphere. X-ray diffraction (XRD), photoluminescence (PL) and atomic force microscopy (AFM) analyses were performed to investigate the cristallinity and surface morphology of the ZnO film. According to the analysis results the crystallinity of a ZnO thin film deposited by rf magnetron sputtering is substantially improved by using a Zn buffer layer. The highest ZnO film quality is obtained with a 110nm thick Zn buffer layer. The surface roughness of the ZnO thin film increases as the Zn buffer layer thickness increases.


2009 ◽  
Vol 18 (3) ◽  
pp. 213-220 ◽  
Author(s):  
Young-Soo No ◽  
Dong-Hee Park ◽  
Tae-Whan Kim ◽  
Ji-Won Choi ◽  
Won-Kook Choi

2003 ◽  
Vol 82 (7) ◽  
pp. 1117-1119 ◽  
Author(s):  
P. F. Carcia ◽  
R. S. McLean ◽  
M. H. Reilly ◽  
G. Nunes

2011 ◽  
Vol 1288 ◽  
Author(s):  
Rashmi Menon ◽  
K. Sreenivas ◽  
Vinay Gupta

ABSTRACTZinc Oxide (ZnO), II-VI compound semiconductor, is a promising material for ultraviolet (UV) photon sensor applications due to its attractive properties such as good photoconductivity, ease processing at low temperatures and excellent radiation hardness. The rf magnetron sputtering is a suitable deposition technique due to better control over stoichiometry and deposition of uniform film. Studies have shown that the presence of surface defects in ZnO and subsequently their passivation are crucial for enhanced photo-response characteristics, and to obtain the fast response speed. Worldwide efforts are continuing to develop good quality ZnO thin films with novel design structures for realization of an efficient UV photon sensor. In the present work, UV photon sensor is fabricated using a ZnO thin films deposited by rf magnetron sputtering on the corning glass substrate. Photo-response, (Ion/Ioff) of as-grown ZnO film of thickness 100 nm is found to be 3×103 with response time of 90 ms for UV intensity of 140 μW/cm2 (λ = 365 nm). With irradiation on ZnO thin film by pulsed Nd:YAG laser (forth harmonics 266 nm), the sensitivity of the UV sensor is found to enhance. The photo-response increases after laser irradiation to 4x104 with a fast response speed of 35 ms and attributed to the change in surface states and the native defects in the ZnO thin film. Further, enhancement in the ultraviolet (UV) photo-response (8×104) of detector was observed after integrating the nano-scale islands of Sn metal on the surface of laser irradiated ZnO thin film.


2010 ◽  
Vol 256 (21) ◽  
pp. 6350-6353 ◽  
Author(s):  
Tokiyoshi Matsuda ◽  
Mamoru Furuta ◽  
Takahiro Hiramatsu ◽  
Hiroshi Furuta ◽  
Chaoyang Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document