scholarly journals Wear in hard metal check valves: In-situ surface modification through tribolayer formation in dry contact

Vacuum ◽  
2021 ◽  
pp. 110482
Author(s):  
A. Blutmager ◽  
M. Varga ◽  
U. Cihak-Bayr ◽  
W. Friesenbichler ◽  
P.H. Mayrhofer
Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3198
Author(s):  
Justyna Frączyk ◽  
Sylwia Magdziarz ◽  
Ewa Stodolak-Zych ◽  
Ewa Dzierzkowska ◽  
Dorota Puchowicz ◽  
...  

It was shown that carbon nonwoven fabrics obtained from polyacrylonitrile fibers (PAN) by thermal conversion may be modified on the surface in order to improve their biological compatibility and cellular response, which is particularly important in the regeneration of bone or cartilage tissue. Surface functionalization of carbon nonwovens containing C–C double bonds was carried out using in situ generated diazonium salts derived from aromatic amines containing both electron-acceptor and electron-donor substituents. It was shown that the modification method characteristic for materials containing aromatic structures may be successfully applied to the functionalization of carbon materials. The effectiveness of the surface modification of carbon nonwoven fabrics was confirmed by the FTIR method using an ATR device. The proposed approach allows the incorporation of various functional groups on the nonwovens’ surface, which affects the morphology of fibers as well as their physicochemical properties (wettability). The introduction of a carboxyl group on the surface of nonwoven fabrics, in a reaction with 4-aminobenzoic acid, became a starting point for further modifications necessary for the attachment of RGD-type peptides facilitating cell adhesion to the surface of materials. The surface modification reduced the wettability (θ) of the carbon nonwoven by about 50%. The surface free energy (SFE) in the chemically modified and reference nonwovens remained similar, with the surface modification causing an increase in the polar component (ɣp). The modification of the fiber surface was heterogeneous in nature; however, it provided an attractive site of cell–materials interaction by contacting them to the fiber surface, which supports the adhesion process.


RSC Advances ◽  
2015 ◽  
Vol 5 (52) ◽  
pp. 41867-41876 ◽  
Author(s):  
Yang Yu ◽  
Huangzhao Wei ◽  
Li Yu ◽  
Tong Zhang ◽  
Sen Wang ◽  
...  

Organic synthesis is used to investigate the degradation of m-cresol and the intermediates are identified by in situ NMR.


2016 ◽  
Vol 370 ◽  
pp. 320-327 ◽  
Author(s):  
Bastien Arrotin ◽  
Amory Jacques ◽  
Sébastien Devillers ◽  
Joseph Delhalle ◽  
Zineb Mekhalif

2021 ◽  
Vol 9 (3) ◽  
pp. 035053
Author(s):  
Pardeep Singh ◽  
Amit Bansal ◽  
Hitesh Vasudev ◽  
Parmjit Singh

2014 ◽  
Vol 145 ◽  
pp. 116-122 ◽  
Author(s):  
Yan-Zhen Zheng ◽  
Haiyang Ding ◽  
Yu Liu ◽  
Xia Tao ◽  
Guozhong Cao ◽  
...  

2016 ◽  
Vol 371 ◽  
pp. 281-288 ◽  
Author(s):  
Lifen Hao ◽  
Tingting Gao ◽  
Wei Xu ◽  
Xuechuan Wang ◽  
Shuqin Yang ◽  
...  

2013 ◽  
Vol 683 ◽  
pp. 90-93 ◽  
Author(s):  
Koshiro Mizobe ◽  
Takashi Honda ◽  
Hitonobu Koike ◽  
Edson Costa Santos ◽  
Yuji Kashima ◽  
...  

Polyetheretherketone (PEEK) is a tough semi-crystalline thermoplastic polymer with excellent mechanical properties. While abilities of polyphenylenesulfide (PPS) are similar to PEEK, former material cost was lower than later. Polytetrafluoroethylene (PTFE) is well known because of its low friction coefficient and self lubrication ability. The objective of this study is to observe the friction coefficient of hybrid bearings, PTFE retainer sandwiched with PPS-races or PEEK-races. Rolling contact fatigue tests were performed and in situ friction forces wear measured. It is concluded that the PTFE retainer reduced friction coefficient.


2018 ◽  
Vol 289 ◽  
pp. 228-237 ◽  
Author(s):  
Fanyu Kong ◽  
Xiaodong He ◽  
Qianqian Liu ◽  
Xinxin Qi ◽  
Dongdong Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document