Plasma-Etching Technology With In Situ Etched-Surface Modification for Highly Reliable Low-<tex>$ k$</tex>/Cu Dual Damascene Interconnects

2005 ◽  
Vol 18 (4) ◽  
pp. 672-680 ◽  
Author(s):  
H. Ohtake ◽  
S. Saito ◽  
M. Tada ◽  
T. Onodera ◽  
Y. Hayashi
2001 ◽  
Vol 15 (28n29) ◽  
pp. 1419-1427
Author(s):  
KARUR R. PADMANABHAN

The possibility of carrying out in situ ion beam analysis of a gas-solid interface using RBS/Channeling techniques has been investigated using chemical and plasma etching of Si . A specially constructed thin Si window cell is used to initiate chemical etching of Si using Xe F 2. Analysis of etched Si surface using conventional, micro RBS/Channeling and computer simulated channeling spectra indicates a smooth damage free surface with fairly uniform etching. A moderate increase in etching rate and channeling χ min is observed in the presence of the analyzing beam. The results of chemical etching are compared with that due to Ar + and Xe + plasma induced etching of Si . In situ microbeam channeling analysis with CCM (Channeling Contrast Microscopy) of the plasma-etched surface indicates distinct differences in both etching rate and damage profile of Si (100) surface. The etching rate enhancement and damage profile have been explained using conventional TRIM analysis and ion beam surface damage.


Author(s):  
F. Banhart ◽  
F.O. Phillipp ◽  
R. Bergmann ◽  
E. Czech ◽  
M. Konuma ◽  
...  

Defect-free silicon layers grown on insulators (SOI) are an essential component for future three-dimensional integration of semiconductor devices. Liquid phase epitaxy (LPE) has proved to be a powerful technique to grow high quality SOI structures for devices and for basic physical research. Electron microscopy is indispensable for the development of the growth technique and reveals many interesting structural properties of these materials. Transmission and scanning electron microscopy can be applied to study growth mechanisms, structural defects, and the morphology of Si and SOI layers grown from metallic solutions of various compositions.The treatment of the Si substrates prior to the epitaxial growth described here is wet chemical etching and plasma etching with NF3 ions. At a sample temperature of 20°C the ion etched surface appeared rough (Fig. 1). Plasma etching at a sample temperature of −125°C, however, yields smooth and clean Si surfaces, and, in addition, high anisotropy (small side etching) and selectivity (low etch rate of SiO2) as shown in Fig. 2.


Vacuum ◽  
2021 ◽  
pp. 110482
Author(s):  
A. Blutmager ◽  
M. Varga ◽  
U. Cihak-Bayr ◽  
W. Friesenbichler ◽  
P.H. Mayrhofer

Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3198
Author(s):  
Justyna Frączyk ◽  
Sylwia Magdziarz ◽  
Ewa Stodolak-Zych ◽  
Ewa Dzierzkowska ◽  
Dorota Puchowicz ◽  
...  

It was shown that carbon nonwoven fabrics obtained from polyacrylonitrile fibers (PAN) by thermal conversion may be modified on the surface in order to improve their biological compatibility and cellular response, which is particularly important in the regeneration of bone or cartilage tissue. Surface functionalization of carbon nonwovens containing C–C double bonds was carried out using in situ generated diazonium salts derived from aromatic amines containing both electron-acceptor and electron-donor substituents. It was shown that the modification method characteristic for materials containing aromatic structures may be successfully applied to the functionalization of carbon materials. The effectiveness of the surface modification of carbon nonwoven fabrics was confirmed by the FTIR method using an ATR device. The proposed approach allows the incorporation of various functional groups on the nonwovens’ surface, which affects the morphology of fibers as well as their physicochemical properties (wettability). The introduction of a carboxyl group on the surface of nonwoven fabrics, in a reaction with 4-aminobenzoic acid, became a starting point for further modifications necessary for the attachment of RGD-type peptides facilitating cell adhesion to the surface of materials. The surface modification reduced the wettability (θ) of the carbon nonwoven by about 50%. The surface free energy (SFE) in the chemically modified and reference nonwovens remained similar, with the surface modification causing an increase in the polar component (ɣp). The modification of the fiber surface was heterogeneous in nature; however, it provided an attractive site of cell–materials interaction by contacting them to the fiber surface, which supports the adhesion process.


RSC Advances ◽  
2015 ◽  
Vol 5 (52) ◽  
pp. 41867-41876 ◽  
Author(s):  
Yang Yu ◽  
Huangzhao Wei ◽  
Li Yu ◽  
Tong Zhang ◽  
Sen Wang ◽  
...  

Organic synthesis is used to investigate the degradation of m-cresol and the intermediates are identified by in situ NMR.


Sign in / Sign up

Export Citation Format

Share Document