Effect of compound plate composition on measurement of hERG current IC50 using PatchXpress

2009 ◽  
Vol 60 (2) ◽  
pp. 223
Author(s):  
Zun-Li Mo
Keyword(s):  
2009 ◽  
Vol 60 (1) ◽  
pp. 39-44 ◽  
Author(s):  
Zun-Li Mo ◽  
Tracy Faxel ◽  
Young-Sun Yang ◽  
Robert Gallavan ◽  
Dean Messing ◽  
...  
Keyword(s):  

2020 ◽  
Vol 25 (43) ◽  
pp. 4606-4612 ◽  
Author(s):  
Yuan-Qi Shi ◽  
Pan Fan ◽  
Guo-Cui Zhang ◽  
Yu-Hao Zhang ◽  
Ming-Zhu Li ◽  
...  

Background: The human ether-a-go-go-related gene (hERG) potassium channel is the rapidly activating component of cardiac delayed rectifier potassium current (IKr), which is a crucial determinant of cardiac repolarization. The reduction of hERG current is commonly believed to cause Long QT Syndrome (LQTs). Probucol, a cholesterol-lowering drug, induces LQTs by inhibiting the expression of the hERG channel. Unfortunately, there is currently no effective therapeutic method to rescue probucol-induced LQTs. Methods: Patch-clamp recording techniques were used to detect the action potential duration (APD) and current of hERG. Western blot was performed to measure the expression levels of proteins. Results: In this study, we demonstrated that 1 μM matrine and oxymatrine could rescue the hERG current and hERG surface expression inhibited by probucol. In addition, matrine and oxymatrine significantly shortened the prolonged action potential duration induced by probucol in neonatal cardiac myocytes. We proposed a novel mechanism underlying the probucol induced decrease in the expression of transcription factor Specificity protein 1 (Sp1), which is an established transactivator of the hERG gene. We also demonstrated that matrine and oxymatrine were able to upregulate Sp1 expression which may be one of the possible mechanisms by which matrine and oxymatrine rescued probucol-induced hERG channel deficiency. Conclusion: Our current results demonstrate that matrine and oxymatrine could rescue probucol-induced hERG deficiency in vitro, which may lead to potentially effective therapeutic drugs for treating acquired LQT2 by probucol in the future.


2013 ◽  
Vol 305 (9) ◽  
pp. H1397-H1404 ◽  
Author(s):  
Matthew R. Stump ◽  
Qiuming Gong ◽  
Zhengfeng Zhou

The human ether-a-go-go-related gene ( hERG) encodes a voltage-activated K+ channel that contributes to the repolarization of the cardiac action potential. Long QT syndrome type 2 (LQT2) is an autosomal dominant disorder caused by mutations in hERG, and patients with LQT2 are susceptible to severe ventricular arrhythmias. We have previously shown that nonsense and frameshift LQT2 mutations caused a decrease in mutant mRNA by the nonsense-mediated mRNA decay (NMD) pathway. The Q81X nonsense mutation was recently found to be resistant to NMD. Translation of Q81X is reinitiated at Met124, resulting in the generation of NH2-terminally truncated hERG channels with altered gating properties. In the present study, we identified two additional NMD-resistant LQT2 nonsense mutations, C39X and C44X, in which translation is reinitiated at Met60. Deletion of the first 59 residues of the channel truncated nearly one-third of the highly structured Per-Arnt-Sim domain and resulted in the generation of trafficking-defective proteins and a complete loss of hERG current. Partial deletion of the Per-Arnt-Sim domain also resulted in the accelerated degradation of the mutant channel proteins. The coexpression of mutant and wild-type channels did not significantly disrupt the function and trafficking properties of wild-type hERG. Our present findings indicate that translation reinitiation may generate trafficking-defective as well as dysfunctional channels in patients with LQT2 premature termination codon mutations that occur early in the coding sequence.


2006 ◽  
Vol 16 (2) ◽  
pp. 1765-1768 ◽  
Author(s):  
H. Norikane ◽  
T. Nishikubo ◽  
S. Gokyu ◽  
K. Itoh ◽  
M. Itoh

2003 ◽  
Vol 42 (3) ◽  
pp. 410-418 ◽  
Author(s):  
Long-Mei Wu ◽  
Minako Orikabe ◽  
Yuji Hirano ◽  
Seiko Kawano ◽  
Masayasu Hiraoka

2004 ◽  
Vol 19 (3) ◽  
pp. 137-143 ◽  
Author(s):  
Mikio Hiramatsu ◽  
Long-Mei Wu ◽  
Yuji Hirano ◽  
Seiko Kawano ◽  
Tetsushi Furukawa ◽  
...  

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1637-1637
Author(s):  
Huiyu Li ◽  
Yi-Mei Du ◽  
Linlin Guo ◽  
Tiannan Guo ◽  
Shenghua Jie ◽  
...  

Abstract Background: Recent studies suggest that HERG K+ channel is an important regulator of non excitable cell proliferation and migration, and has been found in tumor cells including acute myeloid leukemia(AML), where HERG K+ channel is generally considered to be absent from their healthy counterparts. Bone marrow stromal cells constitutively secrete the stromal cell-derived factor-1 (SDF-1) which is a homeostatic chemokine that signals through CXCR4, SDF-1/CXCR4 axis and plays an important role in hematopoiesis development and leukemic cells migration. In this study, we investigated whether SDF-1-induced leukemic cell migration associated with HERG K+ channel. Methods: primary CD34+/CD38− leukemic stem cells (LSCs) were isolated by cell sorting using a FACS Vantage. Transwell was used to assess the effect of E-4031, a specific HERG K+ channel inhibitor, on leukemic cell migration, the lower chamber was filled with serum-free RPMI-1640 with 100ng/ml SDF-1. Flow cytometry was used to analyze the CXCR4 expression as well as phenotypical analysis of leukemia samples. HERG K+ channels were expressed in Xenopus oocyte by microinjection and the resulting currents were measured using the standard two microelectrode voltage clamp techniques. Results: numbers of HL-60 cells with and without E-4031 treatment migrated towards SDF-1 in the lower chamber were 1.58±0.98 ×104 and 3.47±0.81 ×104 respectively, indicating E-4031 significantly blocked the cell migration induced by SDF-1. The similar results were also observed in primary leukemic cells (n=7) and leukemic stem cells(n=3). From a holding potential of −80 mV varying potentials from −70 mV to +50 mV in 10 mV increments (2s) were applied to elicit activating currents. Each pulse was followed by a constant return pulse to −50 mV (2s) to evoke outward tail currents. 100 ng/ml SDF-1 increased HERG K+ current expressed in oocytes, for example, at +50 mV, HERG current increased about 30% (n=5). The HERG K+ current increase by SDF-1 might contribute to the mechanism of SDF-1 induced leukemic cell migration. There were no significant changes of CXCR4 expression on both HL-60 cells and primary leukemic cells regardless of untreated and treated with E-4031 for 24 hours (p>0.05), suggesting that the leukemic cell migration induced by SDF-1 were specifically associated with HERG K+ channel, not by regulating CXCR4 expression. Conclusion: the data showed that HERG K+ channel was essential for leukemic cell migration induced by SDF-1. SDF-1 enhanced herg current suggested that SDF-1 promotes leukemic cell migration. Blocking HERG K+ channel with specific inhibitor could decrease leukemic cell and leukemic stem cell migration caused by SDF-1. Prospectively, HERG K+ channel may be a potential therapeutic target with specific inhibitors in leukemia treatment.


2012 ◽  
Vol 101 (2) ◽  
pp. 868-878 ◽  
Author(s):  
Isabelle Plante ◽  
Patrick Vigneault ◽  
Benoît Drolet ◽  
Jacques Turgeon

Sign in / Sign up

Export Citation Format

Share Document