scholarly journals Immune responses induced by inactivated porcine reproductive and respiratory syndrome virus (PRRSV) vaccine in neonatal pigs using different adjuvants

2021 ◽  
Vol 232 ◽  
pp. 110170
Author(s):  
Sandra Vreman ◽  
Norbert Stockhofe-Zurwieden ◽  
Ditta J. Popma-de Graaf ◽  
Huub F.J. Savelkoul ◽  
C. Barnier-Quer ◽  
...  
Vaccines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 480
Author(s):  
Honglei Wang ◽  
Yangyang Xu ◽  
Wenhai Feng

Porcine reproductive and respiratory syndrome virus (PRRSV), an RNA virus widely prevalent in pigs, results in significant economic losses worldwide. PRRSV can escape from the host immune response in several processes. Vaccines, including modified live vaccines and inactivated vaccines, are the best available countermeasures against PRRSV infection. However, challenges still exist as the vaccines are not able to induce broad protection. The reason lies in several facts, mainly the variability of PRRSV and the complexity of the interaction between PRRSV and host immune responses, and overcoming these obstacles will require more exploration. Many novel strategies have been proposed to construct more effective vaccines against this evolving and smart virus. In this review, we will describe the mechanisms of how PRRSV induces weak and delayed immune responses, the current vaccines of PRRSV, and the strategies to develop modified live vaccines using reverse genetics systems.


2020 ◽  
Vol 51 (1) ◽  
Author(s):  
Byeonghwi Lim ◽  
Sangwook Kim ◽  
Kyu-Sang Lim ◽  
Chang-Gi Jeong ◽  
Seung-Chai Kim ◽  
...  

Abstract Porcine reproductive and respiratory syndrome virus (PRRSV) infection is the most important viral disease causing severe economic losses in the swine industry. However, mechanisms underlying gene expression control in immunity-responsible tissues at different time points during PRRSV infection are poorly understood. We constructed an integrated gene co-expression network and identified tissue- and time-dependent biological mechanisms of PRRSV infection through bioinformatics analysis using three tissues (lungs, bronchial lymph nodes [BLNs], and tonsils) via RNA-Seq. Three groups with specific expression patterns (i.e., the 3-dpi, lung, and BLN groups) were discovered. The 3 dpi-specific group showed antiviral and innate-immune signalling similar to the case for influenza A infection. Moreover, we observed adaptive immune responses in the lung-specific group based on various cytokines, while the BLN-specific group showed down-regulated AMPK signalling related to viral replication. Our study may provide comprehensive insights into PRRSV infection, as well as useful information for vaccine development.


2016 ◽  
Vol 90 (7) ◽  
pp. 3584-3599 ◽  
Author(s):  
Yanhua Li ◽  
Duan-Liang Shyu ◽  
Pengcheng Shang ◽  
Jianfa Bai ◽  
Kang Ouyang ◽  
...  

ABSTRACTPorcine reproductive and respiratory syndrome virus (PRRSV) nonstructural protein 1β (nsp1β) is a multifunctional viral protein, which is involved in suppressing the host innate immune response and activating a unique −2/−1 programmed ribosomal frameshifting (PRF) signal for the expression of frameshifting products. In this study, site-directed mutagenesis analysis showed that the R128A or R129A mutation introduced into a highly conserved motif (123GKYLQRRLQ131) reduced the ability of nsp1β to suppress interferon beta (IFN-β) activation and also impaired nsp1β's function as a PRF transactivator. Three recombinant viruses, vR128A, vR129A, and vRR129AA, carrying single or double mutations in the GKYLQRRLQ motif were characterized. In comparison to the wild-type (WT) virus, vR128A and vR129A showed slightly reduced growth abilities, while the vRR129AA mutant had a significantly reduced growth ability in infected cells. Consistent with the attenuated growth phenotypein vitro, pigs infected with nsp1β mutants had lower levels of viremia than did WT virus-infected pigs. Compared to the WT virus in infected cells, all three mutated viruses stimulated high levels of IFN-α expression and exhibited a reduced ability to suppress the mRNA expression of selected interferon-stimulated genes (ISGs). In pigs infected with nsp1β mutants, IFN-α production was increased in the lungs at early time points postinfection, which was correlated with increased innate NK cell function. Furthermore, the augmented innate response was consistent with the increased production of IFN-γ in pigs infected with mutated viruses. These data demonstrate that residues R128 and R129 are critical for nsp1β function and that modifying these key residues in the GKYLQRRLQ motif attenuates virus growth ability and improves the innate and adaptive immune responses in infected animals.IMPORTANCEPRRSV infection induces poor antiviral innate IFN and cytokine responses, which results in weak adaptive immunity. One of the strategies in next-generation vaccine construction is to manipulate viral proteins/genetic elements involved in antagonizing the host immune response. PRRSV nsp1β was identified to be a strong innate immune antagonist. In this study, two basic amino acids, R128 and R129, in a highly conserved GKYLQRRLQ motif were determined to be critical for nsp1β function. Mutations introduced into these two residues attenuated virus growth and improved the innate and adaptive immune responses of infected animals. Technologies developed in this study could be broadly applied to current commercial PRRSV modified live-virus (MLV) vaccines and other candidate vaccines.


2016 ◽  
Vol 162 (1) ◽  
pp. 139-146 ◽  
Author(s):  
Adthakorn Madapong ◽  
Gun Temeeyasen ◽  
Kepalee Saeng-chuto ◽  
Thitima Tripipat ◽  
Wichian Navasakuljinda ◽  
...  

2004 ◽  
Vol 172 (3) ◽  
pp. 1916-1925 ◽  
Author(s):  
Caitlin D. Lemke ◽  
Joseph S. Haynes ◽  
Rodger Spaete ◽  
Deb Adolphson ◽  
Ann Vorwald ◽  
...  

2015 ◽  
Vol 168 (1-2) ◽  
pp. 40-48 ◽  
Author(s):  
Zhijun Li ◽  
Gang Wang ◽  
Yan Wang ◽  
Chong Zhang ◽  
Baicheng Huang ◽  
...  

2013 ◽  
Vol 163 (1-2) ◽  
pp. 1-12 ◽  
Author(s):  
Eefke Weesendorp ◽  
Sophie Morgan ◽  
Norbert Stockhofe-Zurwieden ◽  
Ditta J. Popma-De Graaf ◽  
Simon P. Graham ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document