scholarly journals Cell-type specific regulation of gene expression by simian virus 40 T antigens

Virology ◽  
2009 ◽  
Vol 386 (1) ◽  
pp. 183-191 ◽  
Author(s):  
Paul G. Cantalupo ◽  
Maria Teresa Sáenz-Robles ◽  
Abhilasha V. Rathi ◽  
Rebecca W. Beerman ◽  
William H. Patterson ◽  
...  
2020 ◽  
Vol 34 ◽  
pp. 205873842094619 ◽  
Author(s):  
Young Sun Chung ◽  
Hong Lan Jin ◽  
Kwang Won Jeong

Introduction: The glucocorticoid receptor (GR) is one of the most widely studied ligand-dependent nuclear receptors. The combination of transcriptional regulatory factors required for the expression of individual genes targeted by GR varies across cell types; however, the mechanisms underlying this cell type–specific regulation of gene expression are not yet clear. Methods: Here, we investigated genes regulated by GR in two different cell lines, A549 and ARPE-19, and examined how gene expression varied according to the effect of pioneer factors using RNA-seq and RT-qPCR. Results: Our RNA-seq results identified 19 and 63 genes regulated by GR that are ARPE-19-specific and A549-specific, respectively, suggesting that GR induces the expression of different sets of genes in a cell type–specific manner. RT-qPCR confirmed that the epithelial sodium channel ( ENACα) gene is an ARPE-19 cell-specific GR target gene, whereas the FK506 binding protein 5 ( FKBP5) gene was A549 cell-specific. There was a significant decrease in ENACα expression in FOXA1-deficient ARPE-19 cells, suggesting that FOXA1 might function as a pioneer factor enabling the selective expression of ENACα in ARPE-19 cells but not in A549 cells. Conclusion: These findings indicate that ENACα expression in ARPE-19 cells is regulated by FOXA1 and provide insights into the molecular mechanisms of cell type–specific expression of GR-regulated genes.


2002 ◽  
Vol 76 (13) ◽  
pp. 6762-6770 ◽  
Author(s):  
Michael L. Farrell ◽  
Janet E. Mertz

ABSTRACT The late genes of SV40 are not expressed at significant levels until after the onset of viral DNA replication. We previously identified two hormone response elements (HREs) in the late promoter that contribute to this delay. Mutants defective in these HREs overexpress late RNA at early, but not late, times after transfection of CV-1PD cells. Overexpression of nuclear receptors (NRs) that recognize these HREs leads to repression of the late promoter in a sequence-specific and titratable manner, resulting in a delay in late gene expression. These observations led to a model in which the late promoter is repressed at early times after infection by NRs, with this repression being relieved by titration of these repressors through simian virus 40 (SV40) genome replication to high copy number. Here, we tested this model in the context of the viral life cycle. SV40 genomes containing mutations in either or both HREs that significantly reduce NR binding without altering the coding of any proteins were constructed. Competition for replication between mutant and wild-type viruses in low-multiplicity coinfections indicated that the +1 HRE offered a significant selective advantage to the virus within a few cycles of infection in African green monkey kidney cell lines CV-1, CV-1P, TC-7, MA-134, and Vero but not in CV-1PD′ cells. Interestingly, the +55 HRE offered a selective disadvantage in MA-134 cells but had no effect in CV-1, CV-1P, TC-7, Vero, and CV-1PD′ cells. Thus, we conclude that these HREs are biologically important to the virus, but in a cell type-specific manner.


2020 ◽  
Author(s):  
Devanshi Patel ◽  
Xiaoling Zhang ◽  
John J. Farrell ◽  
Jaeyoon Chung ◽  
Thor D. Stein ◽  
...  

ABSTRACTBecause regulation of gene expression is heritable and context-dependent, we investigated AD-related gene expression patterns in cell-types in blood and brain. Cis-expression quantitative trait locus (eQTL) mapping was performed genome-wide in blood from 5,257 Framingham Heart Study (FHS) participants and in brain donated by 475 Religious Orders Study/Memory & Aging Project (ROSMAP) participants. The association of gene expression with genotypes for all cis SNPs within 1Mb of genes was evaluated using linear regression models for unrelated subjects and linear mixed models for related subjects. Cell type-specific eQTL (ct-eQTL) models included an interaction term for expression of “proxy” genes that discriminate particular cell type. Ct-eQTL analysis identified 11,649 and 2,533 additional significant gene-SNP eQTL pairs in brain and blood, respectively, that were not detected in generic eQTL analysis. Of note, 386 unique target eGenes of significant eQTLs shared between blood and brain were enriched in apoptosis and Wnt signaling pathways. Five of these shared genes are established AD loci. The potential importance and relevance to AD of significant results in myeloid cell-types is supported by the observation that a large portion of GWS ct-eQTLs map within 1Mb of established AD loci and 58% (23/40) of the most significant eGenes in these eQTLs have previously been implicated in AD. This study identified cell-type specific expression patterns for established and potentially novel AD genes, found additional evidence for the role of myeloid cells in AD risk, and discovered potential novel blood and brain AD biomarkers that highlight the importance of cell-type specific analysis.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Ana J. Chucair-Elliott ◽  
Sarah R. Ocañas ◽  
David R. Stanford ◽  
Victor A. Ansere ◽  
Kyla B. Buettner ◽  
...  

AbstractEpigenetic regulation of gene expression occurs in a cell type-specific manner. Current cell-type specific neuroepigenetic studies rely on cell sorting methods that can alter cell phenotype and introduce potential confounds. Here we demonstrate and validate a Nuclear Tagging and Translating Ribosome Affinity Purification (NuTRAP) approach for temporally controlled labeling and isolation of ribosomes and nuclei, and thus RNA and DNA, from specific central nervous system cell types. Analysis of gene expression and DNA modifications in astrocytes or microglia from the same animal demonstrates differential usage of DNA methylation and hydroxymethylation in CpG and non-CpG contexts that corresponds to cell type-specific gene expression. Application of this approach in LPS treated mice uncovers microglia-specific transcriptome and epigenome changes in inflammatory pathways that cannot be detected with tissue-level analysis. The NuTRAP model and the validation approaches presented can be applied to any brain cell type for which a cell type-specific cre is available.


2021 ◽  
Author(s):  
Julien Bryois ◽  
Daniela Calini ◽  
Will Macnair ◽  
Lynette Foo ◽  
Eduard Urich ◽  
...  

Most expression quantitative trait loci (eQTL) studies to date have been performed in heterogeneous brain tissues as opposed to specific cell types. To investigate the genetics of gene expression in adult human cell types from the central nervous system (CNS), we performed an eQTL analysis using single nuclei RNA-seq from 196 individuals in eight CNS cell types. We identified 6108 eGenes, a substantial fraction (43%, 2620 out of 6108) of which show cell-type specific effects, with strongest effects in microglia. Integration of CNS cell-type eQTLs with GWAS revealed novel relationships between expression and disease risk for neuropsychiatric and neurodegenerative diseases. For most GWAS loci, a single gene colocalized in a single cell type providing new clues into disease etiology. Our findings demonstrate substantial contrast in genetic regulation of gene expression among CNS cell types and reveal genetic mechanisms by which disease risk genes influence neurological disorders.


1991 ◽  
Vol 11 (6) ◽  
pp. 3070-3074
Author(s):  
T Choi ◽  
M Huang ◽  
C Gorman ◽  
R Jaenisch

To investigate the role of splicing in the regulation of gene expression, we have generated transgenic mice carrying the human histone H4 promoter linked to the bacterial gene for chloramphenicol acetyltransferase (CAT), with or without a heterologous intron in the transcription unit. We found that CAT activity is 5- to 300-fold higher when the transgene incorporates a hybrid intron than with an analogous transgene precisely deleted for the intervening sequences. This hybrid intron, consisting of an adenovirus splice donor and an immunoglobulin G splice acceptor, stimulated expression in a broad range of tissues in the animal. Although the presence of the hybrid intron increased the frequency of transgenics with significant CAT activity, it did not affect the integration site-dependent variation commonly seen in transgene expression. To determine whether the enhancement is a general outcome of splicing or is dependent on the particular intron, we also produced equivalent transgenics carrying the widely used simian virus 40 small-t intron. We found that the hybrid intron is significantly more effective in elevating transgene expression. Our results suggest that inclusion of the generic intron in cDNA constructs may be valuable in achieving high levels of expression in transgenic mice.


1985 ◽  
Vol 5 (10) ◽  
pp. 2832-2835 ◽  
Author(s):  
F K Yoshimura ◽  
B Davison ◽  
K Chaffin

We tested the ability of sequences in the long terminal repeat (LTR) of a mink cell focus-forming (MCF) murine leukemia virus to function as an enhancer in a cell-type-specific manner. In a stable transformation assay, the MCF or Akv LTR and the simian virus 40 enhancer had similar activities in murine fibroblasts. In contrast, the MCF LTR had a significantly greater activity in murine T lymphoid cells than did either the simian virus 40 enhancer or the Akv LTR.


1993 ◽  
Vol 90 (23) ◽  
pp. 11356-11360 ◽  
Author(s):  
B C Sorkin ◽  
F S Jones ◽  
B A Cunningham ◽  
G M Edelman

L-CAM is a calcium-dependent cell adhesion molecule that is expressed in a characteristic place-dependent pattern during development. Previous studies of ectopic expression of the chicken L-CAM gene under the control of heterologous promoters in transgenic mice suggested that cis-acting sequences controlling the spatiotemporal expression patterns of L-CAM were present within the gene itself. We have now examined the L-CAM gene for sequences that control its expression and have found an enhancer within the second intron of the gene. A 2.5-kb Kpn I-EcoRI fragment from the intron acted as an enhancer of a simian virus 40 minimal promoter driving a chloramphenicol acetyltransferase (CAT) reporter gene and produced 14.0-fold induction of CAT activity in MDCK cells. To narrow down the region responsible for enhancer activity and to determine whether the enhancer could function in a cell type-specific manner, a number of smaller restriction fragments from the intron were tested for activity in two chicken cell lines, the LMH hepatoma line, which produces high levels of L-CAM, and the SL-29 fibroblast line, which produces little, if any, L-CAM. Four L-CAM enhancer plasmids containing shorter segments derived from the intron showed enhanced CAT activity levels (between 9.4- and 16.5-fold) in extracts from transfected LMH cells but not from SL-29 cells. DNA sequence analysis of the L-CAM enhancer region revealed putative binding sites for the transcription factors SP1, E2A, and AP-2. In addition, LE-9, the smallest L-CAM enhancer segment (310 bp), contained a consensus binding site for the liver-enriched POU-homeodomain transcription factor, HNF-1. Tests of upstream sequences showed that a 630-bp fragment, corresponding to nearly the entire intergenic region between L-CAM and its neighboring CAM gene, K-CAM, could function as a promoter. In combination with the L-CAM enhancer, this fragment directed cell type-specific expression of the CAT reporter gene in LMH cells at a level comparable to that observed with enhancer constructs using the simian virus 40 minimal promoter. These combined observations define a promoter and an enhancer for the chicken L-CAM gene. They raise the possibility that these cis-acting regulatory sequences may be instrumental in directing specific place-dependent expression of the L-CAM gene in the chicken.


Sign in / Sign up

Export Citation Format

Share Document