scholarly journals HIV-1 replication in CD4+ T cells exploits the down-regulation of antiviral NEAT1 long non-coding RNAs following T cell activation

Virology ◽  
2018 ◽  
Vol 522 ◽  
pp. 193-198 ◽  
Author(s):  
Hongbing Liu ◽  
Pei-Wen Hu ◽  
Jacob Couturier ◽  
Dorothy E. Lewis ◽  
Andrew P. Rice
2020 ◽  
Author(s):  
Thomas Vollbrecht ◽  
Aaron O. Angerstein ◽  
Bryson Menke ◽  
Nikesh M. Kumar ◽  
Michelli Faria Oliveira ◽  
...  

Abstract BackgroundA reservoir of replication-competent but latent virus is the main obstacle to a cure for HIV-infection. Much of this reservoir resides in memory CD4 T cells. We hypothesized that these cells can be reactivated with antigens from HIV and other common pathogens to reverse latency. ResultsWe obtained mononuclear cells from the peripheral blood of antiretroviral-treated patients with suppressed viremia. We tested pools of peptides and proteins derived from HIV and from other pathogens including CMV for their ability to reverse latency ex vivo by activation of memory responses. We assessed activation of the CD4 T cells by measuring the up-regulation of cell-surface CD69. We assessed HIV-expression using two assays: a real-time PCR assay for virion-associated viral RNA and a droplet digital PCR assay for cell-associated, multiply spliced viral mRNA. Reversal of latency occurred in a minority of cells from some participants, but no single antigen induced HIV-expression ex vivo consistently. When reversal of latency was induced by a specific peptide pool or protein, the extent was proportionally greater than that of T cell activation. ConclusionsIn this group of patients in whom antiretroviral therapy was started during chronic infection, the latent reservoir does not appear to consistently reside in CD4 T cells of a predominant antigen-specificity. Peptide-antigens reversed HIV-latency ex vivo with modest and variable activity. When latency was reversed by specific peptides or proteins, it was proportionally greater than the extent of T cell activation, suggesting partial enrichment of the latent reservoir in cells of specific antigen-reactivity.


Blood ◽  
2007 ◽  
Vol 110 (13) ◽  
pp. 4161-4164 ◽  
Author(s):  
Suha Saleh ◽  
Ajantha Solomon ◽  
Fiona Wightman ◽  
Miranda Xhilaga ◽  
Paul U. Cameron ◽  
...  

Latent HIV-1 infection of resting memory CD4+ T cells represents the major barrier to HIV-1 eradication. To determine whether the CCR7 ligands involved in lymphocyte migration can alter HIV-1 infection of resting CD4+ T cells, we infected purified resting CD4+ T cells after incubation with the chemokines CCL19 and CCL21. Incubation with CCL19 or CCL21 did not alter markers of T-cell activation or proliferation. However, after HIV-1 infection of CCL19- or CCL21-treated CD4+ T-cells, we observed low-level HIV-1 production but high concentrations of integrated HIV-1 DNA, approaching that seen in mitogen-stimulated T-cell blasts. Restimulation of CCL19-treated infected CD4+ T cells resulted in virus production consistent with establishment of postintegration latency. CCR7 ligands facilitate efficient entry of HIV-1 into resting CD4+ T cells. These studies demonstrate a unique action of the chemokines CCL19 and CCL21 and provide a novel model with which to study HIV-1 latency in vitro.


1993 ◽  
Vol 90 (23) ◽  
pp. 11094-11098 ◽  
Author(s):  
O K Haffar ◽  
M D Smithgall ◽  
J Bradshaw ◽  
B Brady ◽  
N K Damle ◽  
...  

Infection with the human immunodeficiency virus type 1 (HIV-1) requires T-cell activation. Recent studies have shown that interactions of the T-lymphocyte receptors CD28 and CTLA-4 with their counter receptor, B7, on antigen-presenting cells are required for optimal T-cell activation. Here we show that HIV-1 infection is associated with decreased expression of CD28 and increased expression of B7 on CD4+ T-cell lines generated from seropositive donors by alloantigen stimulation. Loss of CD28 expression was not seen on CD4+ T-cell lines from seronegative donors, but up-regulation of B7 expression was observed upon more prolonged culture. Both T-cell proliferation and interleukin 2 mRNA accumulation in HIV-1-infected cultures required costimulation with exogenous B7 because these events were blocked by CTLA4Ig, a soluble form of CTLA-4 that binds B7 with high avidity. In contrast, levels of HIV-1 RNA were not affected by CTLA4Ig, indicating that regulation of virus transcription in these cultures did not depend upon CD28-B7 engagement. Infected T cells could present alloantigen to fresh, uninfected CD4+ T cells, leading to increased proliferation and virus spread to the activated cells. Both of these events were blocked by CTLA4Ig. Thus, chronic activation of HIV-1-infected CD4+ T cells reduces expression of CD28 and increases expression of B7, thereby enabling these T cells to become antigen-presenting cells for uninfected CD4+ T cells; this might be another mechanism for HIV-1 transmission via T-cell-T-cell contact.


2020 ◽  
Author(s):  
Thomas Vollbrecht ◽  
Aaron O. Angerstein ◽  
Bryson Menke ◽  
Nikesh M. Kumar ◽  
Michelli Faria Oliveira ◽  
...  

Abstract BackgroundA reservoir of replication-competent but latent virus is the main obstacle to a cure for HIV-1 infection. Much of this reservoir resides in memory CD4 T cells. We hypothesized that these cells can be reactivated with antigens from HIV-1 and other common pathogens to reverse latency. ResultsWe obtained mononuclear cells from the peripheral blood of antiretroviral-treated patients with suppressed viremia. We tested pools of peptides and proteins derived from HIV-1 and from other pathogens including CMV for their ability to reverse latency ex vivo by activation of memory responses. We assessed activation of the CD4 T cells by measuring the up-regulation of cell-surface CD69. We assessed HIV-1 expression using two assays: a real-time PCR assay for virion-associated viral RNA and a droplet digital PCR assay for cell-associated, multiply spliced viral mRNA. Reversal of latency occurred in a minority of cells from some participants, but no single antigen induced HIV-1 expression ex vivo consistently. When reversal of latency was induced by a specific peptide pool or protein, the extent was proportionally greater than that of T cell activation. ConclusionsIn this group of patients in whom antiretroviral therapy was started during chronic infection, the latent reservoir does not appear to consistently reside in CD4 T cells of a predominant antigen-specificity. Peptide-antigens reversed HIV-1 latency ex vivo with modest and variable activity. When latency was reversed by specific peptides or proteins, it was proportionally greater than the extent of T cell activation, suggesting partial enrichment of the latent reservoir in cells of specific antigen-reactivity.


PLoS ONE ◽  
2012 ◽  
Vol 7 (3) ◽  
pp. e34521 ◽  
Author(s):  
Corine St. Gelais ◽  
Christopher M. Coleman ◽  
Jian-Hua Wang ◽  
Li Wu

2007 ◽  
Vol 83 (2) ◽  
pp. 254-262 ◽  
Author(s):  
Lishomwa C. Ndhlovu ◽  
Christopher P. Loo ◽  
Gerald Spotts ◽  
Douglas F. Nixon ◽  
Frederick M. Hecht

AIDS ◽  
2015 ◽  
pp. 1 ◽  
Author(s):  
Nicolas Ruffin ◽  
Vedran Brezar ◽  
Diana Ayinde ◽  
Cécile Lefebvre ◽  
Julian Schulze Zur Wiesch ◽  
...  

2020 ◽  
Author(s):  
Alex Kayongo ◽  
Derrick Semugenze ◽  
Mary Nantongo ◽  
Fred Semitala ◽  
Anxious Jackson Niwaha ◽  
...  

Abstract Background: World over, there are antiretroviral therapy naïve individuals infected with HIV who maintain their CD4+T cell count above 500 cells/µl over 7-10 years and viral loads well controlled below undetectable levels (termed elite controllers, ECs) or at least 2,000 copies/mL (termed viremic controllers, VCs) for at least 12 months. Mechanisms responsible for HIV control in these individuals have not been fully elucidated. We hypothesized that CD4+T cells from elite and viremic controllers are naturally resistant to HIV-1 infection by blocking R5-tropic viral entry. We conducted a case-controlled study in which archived peripheral blood from 31 ECs/VCs and 15 progressors were investigated using in vitro HIV-1 infectivity assays. Results: Briefly, we purified CD4+T cells from peripheral blood using EasySep CD4+ positive selection kit followed by CD4+T cell activation using IL-2, anti-CD28 and anti-CD3. Three days post-activation, CD4+T cells were spinoculated and co-cultured with vesicular stomatitis virus G (VSV-G)-pseudotyped HIV, R5 (ADA-enveloped)- and X4 (NL4.3-enveloped v)-tropic HIV-1. Three days post infection, we quantified and compared the percentage infection of CD4+T cells in cases and controls. We demonstrate that a subgroup of Ugandan elite and viremic controllers possess CD4+T cells that are specifically resistant to R5-tropic virus, remaining fully susceptible to X4-tropic virus. Conclusion: Our study suggests that a subgroup of Ugandan elite and viremic controllers naturally control HIV-1 infection by blocking R5-tropic viral entry. Further research is needed to explore mechanisms of HIV control in the African population.


2018 ◽  
Vol 2 (S1) ◽  
pp. 31-32
Author(s):  
Jon Kibbie ◽  
Stephanie Dillon ◽  
Moriah Castleman ◽  
Jay Liu ◽  
Martin McCarter ◽  
...  

OBJECTIVES/SPECIFIC AIMS: A hallmark of progressive HIV-1 infection is the massive activation and depletion of the gut barrier protective CD4 T helper subsets (Th17 and Th22) in the intestinal mucosa. The loss of these cells is thought to contribute to microbial translocation and systemic immune activation that occurs during chronic infection. In addition to the loss of protective Th subsets, we previously showed that chronically HIV-1 infected individuals have an altered colonic mucosal microbiome, which is in part characterized by a lower relative abundance of bacteria that produce the short-chain fatty acid butyrate in conjunction with increased relative abundance of gram-negative pathobionts. This dysbiosis was linked to markers of mucosal and systemic immune activation in these individuals. Following up on these clinical observations, we sought to understand how a loss of butyrate might contribute to HIV-associated inflammation. Initial studies showed that the addition of butyrate to cultured lamina propria mononuclear cells (LPMC) resulted in decreased pathobiont-driven gut T cell activation, HIV-1 infection levels and production of IL-17 and IFNy. Since the gut barrier protective Th17 and Th22 subsets are preferentially infected and depleted, which is critical to HIV-1 pathogenesis, we wanted to determine the mechanism by which butyrate modulates activation of these important Th subsets in the gut. METHODS/STUDY POPULATION: Total LPMCs or purified LP CD4 T cells were isolated from human jejunal tissue (n=3–6), labeled with CFSE and cultured with TCR/CD28 beads to mimic APC driven T cell activation, with the addition of butyrate at physiologic doses(0–2 mM). Four days after culture, secreted cytokine(IL-17 and IFNy) levels were measured by ELISA. Cells were then short-term (4 hr) mitogenically stimulated (PMA/Ionomycin) in the presence of a golgi transport inhibitor. Total CD4 T cell activation (CD38+/HLA-DR+, CD25+), proliferation (CFSElow), and frequencies of intracellular cytokines were measured by multi-color flow cytometry. Paired t-tests were performed to determine statistical significance. RESULTS/ANTICIPATED RESULTS: Butyrate inhibited LP CD4 T cell activation (p=0.013) and proliferation (p=0.015) within total LPMCs stimulated with TCR/CD28 beads in a dose-dependent manner, with significant activity starting at 0.125 mM. Quantification of total secreted cytokines revealed that butyrate significantly decreased both IL-17 and IFNy production after 4 days of culture at 0.0625 mM and 0.25 mM of butyrate, respectively. Assays using purified LP CD4 T cells demonstrated that butyrate directly decreased LP CD4 T cell activation, proliferation and cytokine production in response to TCR/CD28 stimulation. Studies on specific T helper subsets revealed that butyrate inhibited proliferation of Th17 cells at lower concentrations (IC50:0.147 mM) compared with Th1 (IC50:0.229 mM) and Th22 (IC50:0.258 mM) and Th non-IL-22/IL-17/IFNy producing (IC50:2.14 mM) subsets. In addition, it appeared there was a paradoxical increase of HIV-1 infection levels at lower concentrations of butyrate (0.125 mM). DISCUSSION/SIGNIFICANCE OF IMPACT: The addition of butyrate to activated LP CD4 T cells decreases TCR-mediated activation in a dose-dependent manner, and butyrate acts directly on purified LP CD4 T cell populations independent of other cell populations. Butyrate differentially inhibited the proliferation of Th17, Th1, and Th22 subsets, with Th17 cells being the most sensitive to butyrate but increased the infection levels of all T helper subsets at low concentrations. Further studies are needed to determine the mechanism of butyrate’s actions on LP Th cells and the sensitivity of Th17 cells to the inhibitory effects of butyrate. These results could help direct targeted manipulation of the colonic microbiome of HIV-1 infected individuals to help resolve inflammation and limit the impact of the infection in the gut mucosa and systemically.


Retrovirology ◽  
2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Thomas Vollbrecht ◽  
Aaron O. Angerstein ◽  
Bryson Menke ◽  
Nikesh M. Kumar ◽  
Michelli Faria de Oliveira ◽  
...  

Abstract Background A reservoir of replication-competent but latent virus is the main obstacle to a cure for HIV-1 infection. Much of this reservoir resides in memory CD4 T cells. We hypothesized that these cells can be reactivated with antigens from HIV-1 and other common pathogens to reverse latency. Results We obtained mononuclear cells from the peripheral blood of antiretroviral-treated patients with suppressed viremia. We tested pools of peptides and proteins derived from HIV-1 and from other pathogens including CMV for their ability to reverse latency ex vivo by activation of memory responses. We assessed activation of the CD4 T cells by measuring the up-regulation of cell-surface CD69. We assessed HIV-1 expression using two assays: a real-time PCR assay for virion-associated viral RNA and a droplet digital PCR assay for cell-associated, multiply spliced viral mRNA. Reversal of latency occurred in a minority of cells from some participants, but no single antigen induced HIV-1 expression ex vivo consistently. When reversal of latency was induced by a specific peptide pool or protein, the extent was proportionally greater than that of T cell activation. Conclusions In this group of patients in whom antiretroviral therapy was started during chronic infection, the latent reservoir does not appear to consistently reside in CD4 T cells of a predominant antigen-specificity. Peptide-antigens reversed HIV-1 latency ex vivo with modest and variable activity. When latency was reversed by specific peptides or proteins, it was proportionally greater than the extent of T cell activation, suggesting partial enrichment of the latent reservoir in cells of specific antigen-reactivity.


Sign in / Sign up

Export Citation Format

Share Document