RNA-dependent RNA polymerase 6 of rice (Oryza sativa) plays role in host defense against negative-strand RNA virus, Rice stripe virus

2012 ◽  
Vol 163 (2) ◽  
pp. 512-519 ◽  
Author(s):  
Lin Jiang ◽  
Dan Qian ◽  
Hong Zheng ◽  
Lin-Yan Meng ◽  
Jie Chen ◽  
...  
2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Masayuki Horie ◽  
Yuki Kobayashi ◽  
Tomoyuki Honda ◽  
Kan Fujino ◽  
Takumi Akasaka ◽  
...  

2016 ◽  
Vol 90 (22) ◽  
pp. 10113-10119 ◽  
Author(s):  
Chelsea Severin ◽  
James R. Terrell ◽  
James R. Zengel ◽  
Robert Cox ◽  
Richard K. Plemper ◽  
...  

ABSTRACT In a negative-strand RNA virus, the genomic RNA is sequestered inside the nucleocapsid when the viral RNA-dependent RNA polymerase uses it as the template for viral RNA synthesis. It must require a conformational change in the nucleocapsid protein (N) to make the RNA accessible to the viral polymerase during this process. The structure of an empty mumps virus (MuV) nucleocapsid-like particle was determined to 10.4-Å resolution by cryo-electron microscopy (cryo-EM) image reconstruction. By modeling the crystal structure of parainfluenza virus 5 into the density, it was shown that the α-helix close to the RNA became flexible when RNA was removed. Point mutations in this helix resulted in loss of polymerase activities. Since the core of N is rigid in the nucleocapsid, we suggest that interactions between this region of the mumps virus N and its polymerase, instead of large N domain rotations, lead to exposure of the sequestered genomic RNA. IMPORTANCE Mumps virus (MuV) infection may cause serious diseases, including hearing loss, orchitis, oophoritis, mastitis, and pancreatitis. MuV is a negative-strand RNA virus, similar to rabies virus or Ebola virus, that has a unique mechanism of viral RNA synthesis. They all make their own RNA-dependent RNA polymerase (RdRp). The viral RdRp uses the genomic RNA inside the viral nucleocapsid as the template to synthesize viral RNAs. Since the template RNA is always sequestered in the nucleocapsid, the viral RdRp must find a way to open it up in order to gain access to the covered template. Our work reported here shows that a helix structural element in the MuV nucleocapsid protein becomes open when the sequestered RNA is released. The amino acids related to this helix are required for RdRp to synthesize viral RNA. We propose that the viral RdRp pulls this helix open to release the genomic RNA.


Viruses ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1738
Author(s):  
Alesia A. Levanova ◽  
Eeva J. Vainio ◽  
Jarkko Hantula ◽  
Minna M. Poranen

Heterobasidion RNA virus 6 (HetRV6) is a double-stranded (ds)RNA mycovirus and a member of the recently established genus Orthocurvulavirus within the family Orthocurvulaviridae. The purpose of the study was to determine the biochemical requirements for RNA synthesis catalyzed by HetRV6 RNA-dependent RNA polymerase (RdRp). HetRV6 RdRp was expressed in Escherichia coli and isolated to near homogeneity using liquid chromatography. The enzyme activities were studied in vitro using radiolabeled UTP. The HetRV6 RdRp was able to initiate RNA synthesis in a primer-independent manner using both virus-related and heterologous single-stranded (ss)RNA templates, with a polymerization rate of about 46 nt/min under optimal NTP concentration and temperature. NTPs with 2′-fluoro modifications were also accepted as substrates in the HetRV6 RdRp-catalyzed RNA polymerization reaction. HetRV6 RdRp transcribed viral RNA genome via semi-conservative mechanism. Furthermore, the enzyme demonstrated terminal nucleotidyl transferase (TNTase) activity. Presence of Mn2+ was required for the HetRV6 RdRp catalyzed enzymatic activities. In summary, our study shows that HetRV6 RdRp is an active replicase in vitro that can be potentially used in biotechnological applications, molecular biology, and biomedicine.


2021 ◽  
Author(s):  
Agustina P. Bertolin ◽  
Florian Weissmann ◽  
Jingkun Zeng ◽  
Viktor Posse ◽  
Jennifer C. Milligan ◽  
...  

SummaryThe coronavirus disease 2019 (COVID-19) global pandemic has turned into the largest public health and economic crisis in recent history impacting virtually all sectors of society. There is a need for effective therapeutics to battle the ongoing pandemic. Repurposing existing drugs with known pharmacological safety profiles is a fast and cost-effective approach to identify novel treatments. The COVID-19 etiologic agent is the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a single-stranded positive-sense RNA virus. Coronaviruses rely on the enzymatic activity of the replication-transcription complex (RTC) to multiply inside host cells. The RTC core catalytic component is the RNA-dependent RNA polymerase (RdRp) holoenzyme. The RdRp is one of the key druggable targets for CoVs due to its essential role in viral replication, high degree of sequence and structural conservation and the lack of homologs in human cells. Here, we have expressed, purified and biochemically characterised active SARS-CoV-2 RdRp complexes. We developed a novel fluorescence resonance energy transfer (FRET)-based strand displacement assay for monitoring SARS-CoV-2 RdRp activity suitable for a high-throughput format. As part of a larger research project to identify inhibitors for all the enzymatic activities encoded by SARS-CoV-2, we used this assay to screen a custom chemical library of over 5000 approved and investigational compounds for novel SARS-CoV-2 RdRp inhibitors. We identified 3 novel compounds (GSK-650394, C646 and BH3I-1) and confirmed suramin and suramin-like compounds as in vitro SARS-CoV-2 RdRp activity inhibitors. We also characterised the antiviral efficacy of these drugs in cell-based assays that we developed to monitor SARS-CoV-2 growth.


2020 ◽  
Vol 32 (10) ◽  
pp. 3273-3289 ◽  
Author(s):  
Changzhen Liu ◽  
Yi Shen ◽  
Baoxiang Qin ◽  
Huili Wen ◽  
Jiawen Cheng ◽  
...  

1998 ◽  
Vol 72 (5) ◽  
pp. 4427-4429 ◽  
Author(s):  
Eric Routhier ◽  
Jeremy A. Bruenn

ABSTRACT At least eight conserved motifs are visible in the totivirus RNA-dependent RNA polymerase (RDRP). We have systematically altered each of these in the Saccharomyces cerevisiaedouble-stranded RNA virus ScVL1 by substituting the conserved motifs from a giardiavirus. The results help define the conserved regions of the RDRP involved in polymerase function and those essential for other reasons.


2021 ◽  
Vol 11 ◽  
Author(s):  
Ryosuke Fujita ◽  
Maki N. Inoue ◽  
Takumi Takamatsu ◽  
Hiroshi Arai ◽  
Mayu Nishino ◽  
...  

Late male-killing, a male-specific death after hatching, is a unique phenotype found in Homona magnanima, oriental tea tortrix. The male-killing agent was suspected to be an RNA virus, but details were unknown. We herein successfully isolated and identified the putative male-killing virus as Osugoroshi viruses (OGVs). The three RNA-dependent RNA polymerase genes detected were phylogenetically related to Partitiviridae, a group of segmented double-stranded RNA viruses. Purified dsRNA from a late male-killing strain of H. magnanima revealed 24 segments, in addition to the RdRps, with consensus terminal sequences. These segments included the previously found male-killing agents MK1068 (herein OGV-related RNA16) and MK1241 (OGV-related RNA7) RNAs. Ultramicroscopic observation of purified virions, which induced late male-killing in the progeny of injected moths, showed sizes typical of Partitiviridae. Mathematical modeling showed the importance of late male-killing in facilitating horizontal transmission of OGVs in an H. magnanima population. This study is the first report on the isolation of partiti-like virus from insects, and one thought to be associated with late male-killing, although the viral genomic contents and combinations in each virus are still unknown.


2020 ◽  
Author(s):  
Yan Zhao ◽  
Jing Sun ◽  
Yunfei Li ◽  
Zhengxuan Li ◽  
Yu Xie ◽  
...  

AbstractSARS-CoV-2, a positive single-stranded RNA virus, caused the COVID-19 pandemic. During the viral replication and transcription, the RNA dependent RNA polymerase (RdRp) “jumps” along the genome template, resulting in discontinuous negative-stranded transcripts. In other coronaviruses, the negative strand RNA was found functionally relevant to the activation of host innate immune responses. Although the sense-mRNA architectures of SARS-CoV-2 were reported, its negative strand was unexplored. Here, we deeply sequenced both strands of RNA and found SARS-CoV-2 transcription is strongly biased to form the sense strand. During negative strand synthesis, apart from canonical sub-genomic ORFs, numerous non-canonical fusion transcripts are formed, driven by 3-15 nt sequence homology scattered along the genome but more prone to be inhibited by SARS-CoV-2 RNA polymerase inhibitor Remdesivir. The drug also represses more of the negative than the positive strand synthesis as supported by a mathematic simulation model and experimental quantifications. Overall, this study opens new sights into SARS-CoV-2 biogenesis and may facilitate the anti-viral vaccine development and drug design.One Sentence SummaryStrand-biased transcription of SARS-CoV-2.


Sign in / Sign up

Export Citation Format

Share Document