Chicken manure-based bioponics: Effects of acetic acid supplementation on nitrogen and phosphorus recoveries and microbial communities

2022 ◽  
Vol 137 ◽  
pp. 264-274
Author(s):  
Sumeth Wongkiew ◽  
Chongrak Polprasert ◽  
Thammarat Koottatep ◽  
Tawan Limpiyakorn ◽  
K.C. Surendra ◽  
...  
2021 ◽  
Vol 125 ◽  
pp. 67-76
Author(s):  
Sumeth Wongkiew ◽  
Thammarat Koottatep ◽  
Chongrak Polprasert ◽  
Pinidphon Prombutara ◽  
Wanida Jinsart ◽  
...  

2015 ◽  
Vol 12 (13) ◽  
pp. 10359-10387 ◽  
Author(s):  
W. Y. Dong ◽  
X. Y. Zhang ◽  
X. Y. Liu ◽  
X. L. Fu ◽  
F. S. Chen ◽  
...  

Abstract. Nitrogen (N) and phosphorus (P) additions to forest ecosystems are known to influence various above-ground properties, such as plant productivity and composition, and below-ground properties, such as soil nutrient cycling. However, our understanding of how soil microbial communities and their functions respond to nutrient additions in subtropical plantations is still not complete. In this study, we added N and P to Chinese fir plantations in subtropical China to examine how nutrient additions influenced soil microbial community composition and enzyme activities. The results showed that most soil microbial properties were responsive to N and/or P additions, but responses often varied depending on the nutrient added and the quantity added. For instance, there were more than 30 % greater increases in the activities of β-Glucosidase (βG) and N-acetyl-β-D-glucosaminidase (NAG) in the treatments that received nutrient additions compared to the control plot, whereas acid phosphatase (aP) activity was always higher (57 and 71 %, respectively) in the P treatment. N and P additions greatly enhanced the PLFA abundanceespecially in the N2P treatment, the bacterial PLFAs (bacPLFAs), fungal PLFAs (funPLFAs) and actinomycic PLFAs (actPLFAs) were about 2.5, 3 and 4 times higher, respectively, than in the CK. Soil enzyme activities were noticeably higher in November than in July, mainly due to seasonal differences in soil moisture content (SMC). βG or NAG activities were significantly and positively correlated with microbial PLFAs. There were also significant relationships between gram-positive (G+) bacteria and all three soil enzymes. These findings indicate that G+ bacteria is the most important microbial community in C, N, and P transformations in Chinese fir plantations, and that βG and NAG would be useful tools for assessing the biogeochemical transformation and metabolic activity of soil microbes. We recommend combined additions of N and P fertilizer to promote soil fertility and microbial activity in this kind of plantation.


2016 ◽  
Vol 76 (2) ◽  
Author(s):  
Irma KRESNAWATY ◽  
Syeda ANDANAWARIH ◽  
. SUHARYANTO ◽  
. TRI-PANJI

Summary Concentrated latex effluent had not been economically utilized, consequently it had become source of environmental pollution and conflicts with surrounding community. Whereas, the concentrated latex effluent could be used as substrate for microbes growth media due to its high concentration of carbon and nitrogen. One of the economical benefits of growing Rhizobium sp. in this waste is the production of  indole acetic acid (IAA) that  can be used for plant promotion growth. The aims of this research were to get the optimal IAA production of Rhizobium sp. by optimizing its tryptophan supplementation through hydrolysis of chicken manure and to purify IAA produced using chromatographic method. The use of chicken manure directly caused the browning effect, therefore these experiments were carried out the variation of NaOH 2 N hydrolysis treatments to reduce the effect. Direct hydrolysis as the first media  was obtained by mixing latex serum and manure, and then this mixture was hydrolyzed. Meanwhile, separated hydrolysis was done by adding water to manure, being hydrolyzed, and divided to become second and third media. The second media  was made by mixing manure hydrolysate and latex serum directly, whereas in third media, hydrolisate was added with alum as coagulating agent. Rhizobium sp. was then inoculated to all media and incubated for 24, 48, and 72 hours in 27-30oC. IAA was analyzed by spectrophotometric method with Salkowsky reagent and Thin Layer Chromatography (TLC). IAA was then extracted with ethyl acetate and purified with silica gel column chromatography. The separated hydrolysis without coagulation (second media) produced the highest IAA concentration, that is 14.40 mg/mL, whereas IAA produced by direct hydrolysis (first media) was 14.13 mg/mL and 0.90 mg/mL for third media  during 48 hours. The fractionation result  for each mediums showed that the highest IAA distribution in first media  was the 12th fraction (38.70%), meanwhile in second media  was the 15th fraction (50.25%) and in the third  media was the 13th fraction (26.16%). Ringkasan Limbah lateks pekat saat ini belum di-manfaatkan secara ekonomis, bahkan menjadi sumber pencemaran lingkungan dan konflik dengan masyarakat sekitarnya. Padahal limbah lateks pekat dapat digunakan sebagai substrat pertumbuhan mikroba karena memiliki kandungan karbon dan nitrogen yang cukup tinggi.  Salah  satu  nilai  ekonomis yang dapat diperoleh dengan ditumbuhkannya Rhizobium sp. pada limbah tersebut, yaitu dihasilkannya asam indol asetat (indol acetic acid/IAA) yang dapat digunakan untuk memacu pertumbuhan tanaman. Penelitian ini bertujuan memperoleh produksi IAA optimal yang dihasilkan Rhizobium sp. dengan asupan triptofan dari hidrolisis pupuk kandang dan memurnikan IAA yang dihasilkan tersebut dengan metode kromatografi. Penggunaan pupuk kandang secara langsung menyebabkan efek pen-cokelatan, maka dilakukan variasi perlakuan hidrolisis dengan NaOH 2 N untuk mengurangi efek tersebut. Hidrolisis langsung sebagai medium pertama diperoleh dengan mencampur serum lateks dan pupuk kandang, sedangkan hidrolisis terpisah dilakukan dengan menambah pupuk kandang dengan air,  dan dibagi menjadi medium kedua dan ketiga. Medium kedua dibuat dengan cara  langsung mencampur hidrolisat dan serum lateks, sedangkan pada medium ketiga, hidrolisat diendapkan dengan alum sebagai bahan pengendap.  Kemudian ke dalam masing-masing medium diinokulasi  Rhizobium sp. dan diinkubasi selama 24 ,48, dan 72 jam pada suhu 27-30oC. Analisis IAA dilakukan secara spektrofotometri dengan metode Salkowski dan Kromatografi Lapis Tipis (KLT). IAA diekstraksi menggunakan etil asetat dan dimurnikan dengan kromatografi kolom silika gel. Hidrolisis terpisah tanpa pengendapan (medium kedua) menghasilkan IAA tertinggi, yaitu 14,40 mg/mL, sedangkan hidrolis langsung (medium pertama) menghasilkan IAA sebesar 14,13 mg/mL dan medium ketiga sebesar 0,90 mg/mL selama 48 jam. Hasil fraksinasi untuk masing-masing medium menunjukkan sebaran IAA tertinggi pada medium pertama berada pada fraksi ke-12 (38,70%), sedangkan pada medium kedua pada fraksi ke-15 (50,25%), dan pada medium ketiga ialah fraksi ke-13 (26,16%). 


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Luisa Fernanda Gómez Londoño ◽  
Laura Carolina Pérez León ◽  
Juan Guillermo McEwen Ochoa ◽  
Alejandra Zuluaga Rodriguez ◽  
Carlos Alberto Peláez Jaramillo ◽  
...  

Histoplasma capsulatum (H. capsulatum) is a thermal-dimorphic fungus, the causal agent of histoplasmosis. Its presence in the environment is related with chicken manure due to their high nitrogen and phosphorus content. In Colombia, chicken manure is the most used raw material in the composting process; however, there is no information about the capacity of H. capsulatum to survive and remain viable in a composted organic fertilizer. To address this question, this study shows three assays based on microbiological culture and the Hc100 nested PCR. First, a composting reactor system was designed to transform organic material under laboratory conditions, and the raw material was inoculated with the fungus. From these reactors, the fungus was not isolated, but its DNA was detected. In the second assay, samples from factories where the DNA of the fungus was previously detected by PCR were analyzed. In the raw material samples, 3 colonies of H. capsulatum were isolated and its DNA was detected. However, after the composting process, neither the fungus was recovered by culture nor DNA was detected. In the third assay, sterilized and nonsterilized organic composted samples were inoculated with H. capsulatum and then evaluated monthly during a year. In both types of samples, the fungus DNA was detected by Hc100 nested PCR during the whole year, but the fungus only grew from sterile samples during the first two months evaluated. In general, the results of the assays showed that H. capsulatum is not able to survive a well-done composting process.


2001 ◽  
Vol 55 (8) ◽  
pp. 1607-1617 ◽  
Author(s):  
M.A.L. Ferreira ◽  
A.F. Brasil ◽  
J.R.V. Silva ◽  
E.R. Andrade ◽  
A.P.R. Rodrigues ◽  
...  

Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 195
Author(s):  
Jennifer E. Schmidt ◽  
Alana Firl ◽  
Hamran Hamran ◽  
Nur Insana Imaniar ◽  
Taylor M. Crow ◽  
...  

Cacao agroforestry systems offer the potential to diversify farmer income sources, enhance biodiversity, sequester carbon, and deliver other important ecosystem services. To date, however, studies have emphasized field- and system-scale outcomes of shade tree integration, and potential impacts on the rhizosphere of adjacent cacao trees have not been fully characterized. Interactions at the root–soil interface are closely linked to plant health and productivity, making it important to understand how diverse shade tree species may affect soil fertility and microbial communities in the cacao rhizosphere. We assessed the impacts of neighboring shade tree presence and identity on cacao yields and physical, chemical, and biological components of the cacao rhizosphere in a recently established diversified agroforestry system in South Sulawesi, Indonesia. Stepwise regression revealed surprising and strong impacts of microbial diversity and community composition on cacao yields and pod infection rates. The presence of neighboring shade trees increased nitrogen, phosphorus, and pH in the rhizosphere of nearby cacao trees without yield losses. Over a longer time horizon, these increases in rhizosphere soil fertility will likely increase cacao productivity and shape microbial communities, as regression models showed nitrogen and phosphorus in particular to be important predictors of cacao yields and microbiome diversity and composition. However, neither presence nor identity of shade trees directly affected microbial diversity, community composition, or field-scale distance-decay relationships at this early stage of establishment. These results highlight locally specific benefits of shade trees in this agroecological context and emphasize the rhizosphere as a key link in indirect impacts of shade trees on cacao health and productivity in diversified systems.


Sign in / Sign up

Export Citation Format

Share Document