Effects of selected pharmaceutically active compounds on treatment performance in sequencing batch reactors mimicking wastewater treatment plants operations

2011 ◽  
Vol 45 (11) ◽  
pp. 3398-3406 ◽  
Author(s):  
Shuyi Wang ◽  
Claudia K. Gunsch
RSC Advances ◽  
2016 ◽  
Vol 6 (111) ◽  
pp. 110108-110111 ◽  
Author(s):  
Zhenghui Liu ◽  
Huifang Zhou ◽  
Jiefeng Liu ◽  
Xudong Yin ◽  
Yufeng Mao ◽  
...  

Zinc oxide nanoparticles (ZnO NPs) have been monitored in wastewater treatment plants as their potential adverse effects on functional microorganisms have been causing increasing concern.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9325
Author(s):  
Katarzyna Jaromin-Gleń ◽  
Roman Babko ◽  
Tatiana Kuzmina ◽  
Yaroslav Danko ◽  
Grzegorz Łagód ◽  
...  

Reduction of the greenhouse effect is primarily associated with the reduction of greenhouse gas (GHG) emissions. Carbon dioxide (CO2) is one of the gases that increases the greenhouse effect - it is responsible for about half of the greenhouse effect. Significant sources of CO2 are wastewater treatment plants (WWTPs) and waste management, with about 3% contribution to global emissions. CO2 is produced mainly in the aerobic stage of wastewater purification and is a consequence of activated sludge activity. Although the roles of activated sludge components in the purification process have been studied quite well, their quantitative contribution to CO2 emissions is still unknown. The emission of CO2 caused by prokaryotes and eukaryotes over the course of a year (taking into account subsequent seasons) in model sequencing batch reactors (SBR) is presented in this study. In this work, for the first time, we aimed to quantify this contribution of eukaryotic organisms to total CO2 emissions during the WWTP process. It is of the order of several or more ppm. The contribution of CO2 produced by different components of activated sludge in WWTPs can improve estimation of the emissions of GHGs in this area of human activity.


2017 ◽  
Vol 77 (2) ◽  
pp. 493-503 ◽  
Author(s):  
R. M. Holzem ◽  
C. M. Gardner ◽  
C. K. Gunsch

Abstract Triclosan (TCS) is a broad range antimicrobial agent used in many personal care products, which is commonly discharged to wastewater treatment facilities (WWTFs). This study examined the impact of TCS on wastewater treatment performance using laboratory bench-scale sequencing batch reactors (SBRs) coupled with anaerobic digesters. The SBRs were continuously fed synthetic wastewater amended with or without 0.68 μM TCS, with the aim of determining the effect of chronic TCS exposure as opposed to a pulse TCS addition as previously studied. Overall, the present study suggests inhibition of nitrogen removal during reactor startup. However, NH4+ removal fully rebounded after 63 days, suggesting acclimation of the associated microbial communities to TCS. An initial decrease in microbial community diversity was observed in the SBRs fed TCS as compared to the control SBRs, followed by an increase in community diversity, which coincided with the increase in NH4+ removal. Elevated levels of NO3− and NO2− were found in the reactor effluent after day 58, however, suggesting ammonia oxidizing bacteria rebounding more rapidly than nitrogen oxidizing bacteria. Similar effects on treatment efficiencies at actual WWTFs have not been widely observed, suggesting that continuous addition of TCS in their influent may have selected for TCS-resistant nitrogen oxidizing bacteria.


1993 ◽  
Vol 28 (10) ◽  
pp. 233-242 ◽  
Author(s):  
Bjorn Rusten ◽  
Helge Eliassen

In order to optimize the sequencing batch reactor (SBR) process for nutrient removal at small wastewater treatment plants, a two year study was carried out at a treatment plant designed for 300 population equivalents. Different operating cycles, solids retention times (SRTs) and periods with co-precipitation were included in the test program. Based on the results, recommendations for achieving nitrification, denitrification and biological phosphorus removal were given. A suitable coagulant (and the optimum dosage) for co-precipitation was found as well.


Sign in / Sign up

Export Citation Format

Share Document