Sequencing Batch Reactors for Nutrient Removal at Small Wastewater Treatment Plants

1993 ◽  
Vol 28 (10) ◽  
pp. 233-242 ◽  
Author(s):  
Bjorn Rusten ◽  
Helge Eliassen

In order to optimize the sequencing batch reactor (SBR) process for nutrient removal at small wastewater treatment plants, a two year study was carried out at a treatment plant designed for 300 population equivalents. Different operating cycles, solids retention times (SRTs) and periods with co-precipitation were included in the test program. Based on the results, recommendations for achieving nitrification, denitrification and biological phosphorus removal were given. A suitable coagulant (and the optimum dosage) for co-precipitation was found as well.

1998 ◽  
Vol 38 (4-5) ◽  
pp. 69-77 ◽  
Author(s):  
M. Kabacinski ◽  
B. Hultman ◽  
E. Plaza ◽  
J. Trela

Advanced process technology has been implemented at newly built wastewater treatment plants in Central and Eastern Europe. The wastewater treatment plant (WWTP) in Nowy Targ, Poland, the largest in Europe based on sequencing batch reactor (SBR) technology, has shown that newly constructed plants must be integrated into the system of water, wastewater, and sludge management in the city and the region. A significant supply of tannery wastewater with increasing chromium concentrations in the influent to the WWTP has resulted in many operational problems related mainly to sludge treatment. Evaluation of the process performance and sludge handling for 2 years of plant operation is presented. Efficient biological phosphorus removal with concentrations lower than 1 mg/l in effluent is obtained. Nitrogen removal is characterised by a low nitrification rate and a high denitrification rate. Problems with sludge handling are related to high excess sludge production, insufficient sludge stabilisation, low sludge dewatering efficiency and high chromium content in the sludge. Different strategies for sludge handling improvement are discussed. Sludge should be treated as a resource, which is recirculating in an eco-cycle with recovery of nutrients and energy. Such a process is proposed for the WWTP in Nowy Targ.


2020 ◽  
Vol 15 (2) ◽  
pp. 142-151
Author(s):  
Peter Lukac ◽  
Lubos Jurik

Abstract:Phosphorus is a major substance that is needed especially for agricultural production or for the industry. At the same time it is an important component of wastewater. At present, the waste management priority is recycling and this requirement is also transferred to wastewater treatment plants. Substances in wastewater can be recovered and utilized. In Europe (in Germany and Austria already legally binding), access to phosphorus-containing sewage treatment is changing. This paper dealt with the issue of phosphorus on the sewage treatment plant in Nitra. There are several industrial areas in Nitra where record major producers in phosphorus production in sewage. The new wastewater treatment plant is built as a mechanicalbiological wastewater treatment plant with simultaneous nitrification and denitrification, sludge regeneration, an anaerobic zone for biological phosphorus removal at the beginning of the process and chemical phosphorus precipitation. The sludge management is anaerobic sludge stabilization with heating and mechanical dewatering of stabilized sludge and gas management. The aim of the work was to document the phosphorus balance in all parts of the wastewater treatment plant - from the inflow of raw water to the outflow of purified water and the production of excess sludge. Balancing quantities in the wastewater treatment plant treatment processes provide information where efficient phosphorus recovery could be possible. The mean daily value of P tot is approximately 122.3 kg/day of these two sources. The mean daily value of P tot is approximately 122.3 kg/day of these two sources. There are also two outflows - drainage of cleaned water to the recipient - the river Nitra - 9.9 kg Ptot/day and Ptot content in sewage sludge - about 120.3 kg Ptot/day - total 130.2 kg Ptot/day.


Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 210
Author(s):  
Tang Liu ◽  
Shufeng Liu ◽  
Shishi He ◽  
Zhichao Tian ◽  
Maosheng Zheng

To explore the main behavior and mechanism of minimizing nitrous oxide (N2O) emission through intermittent aeration during wastewater treatment, two lab-scale sequencing batch reactors operated at intermittently aerated mode (SBR1), and continuously aerated mode (SBR2) were established. Compared with SBR2, the intermittently aerated SBR1 reached not only a higher total nitrogen removal efficiency (averaged 93.5%) but also a lower N2O-emission factor (0.01–0.53% of influent ammonia), in which short-cut nitrification and denitrification were promoted. Moreover, less accumulation and consumption of polyhydroxyalkanoates, a potential endogenous carbon source promoting N2O emission, were observed in SBR1. Batch experiments revealed that nitrifier denitrification was the major pathway generating N2O while heterotrophic denitrification played as a sink of N2O, and SBR1 embraced a larger N2O-mitigating capability. Finally, quantitative polymerase chain reaction results suggested that the abundant complete ammonia oxidizer (comammox) elevated in the intermittently aerated environment played a potential role in avoiding N2O generation during wastewater treatment. This work provides an in-depth insight into the utilization of proper management of intermittent aeration to control N2O emission from wastewater treatment plants.


2013 ◽  
Vol 67 (7) ◽  
pp. 1481-1489 ◽  
Author(s):  
R. Barat ◽  
J. Serralta ◽  
M. V. Ruano ◽  
E. Jiménez ◽  
J. Ribes ◽  
...  

This paper presents the plant-wide model Biological Nutrient Removal Model No. 2 (BNRM2). Since nitrite was not considered in the BNRM1, and this previous model also failed to accurately simulate the anaerobic digestion because precipitation processes were not considered, an extension of BNRM1 has been developed. This extension comprises all the components and processes required to simulate nitrogen removal via nitrite and the formation of the solids most likely to precipitate in anaerobic digesters. The solids considered in BNRM2 are: struvite, amorphous calcium phosphate, hidroxyapatite, newberite, vivianite, strengite, variscite, and calcium carbonate. With regard to nitrogen removal via nitrite, apart from nitrite oxidizing bacteria two groups of ammonium oxidizing organisms (AOO) have been considered since different sets of kinetic parameters have been reported for the AOO present in activated sludge systems and SHARON (Single reactor system for High activity Ammonium Removal Over Nitrite) reactors. Due to the new processes considered, BNRM2 allows an accurate prediction of wastewater treatment plant performance in wider environmental and operating conditions.


RSC Advances ◽  
2016 ◽  
Vol 6 (111) ◽  
pp. 110108-110111 ◽  
Author(s):  
Zhenghui Liu ◽  
Huifang Zhou ◽  
Jiefeng Liu ◽  
Xudong Yin ◽  
Yufeng Mao ◽  
...  

Zinc oxide nanoparticles (ZnO NPs) have been monitored in wastewater treatment plants as their potential adverse effects on functional microorganisms have been causing increasing concern.


1994 ◽  
Vol 30 (2) ◽  
pp. 165-174 ◽  
Author(s):  
Ralf Otterpohl ◽  
Thomas Rolfs ◽  
Jörg Londong

Computer simulation of activated sludge plant for nitrogen removal has become a reliable tool to predict the behaviour of the plant Models including biological phosphorus removal still require some practical experience but they should be available soon. This will offer an even wider range than today's work with nitrogen removal. One major benefit of computer simulation of wastewater treatment plants (WTP) is the optimization of operation. This can be done offline if hydrographs of a plant are collected and computer work is done with “historical” analysis. With online simulation the system is fed with hydrographs up to the actual time. Prognosis can be done from the moment of the computer work based on usual hydrographs. The work of the authors shows how accuratly a treatment plant can be described, when many parameters are measured and available as hydrographs. A very careful description of all details of the special plant is essential, requiring a flexible simulation tool. Based on the accurate simulation a wide range of operational decisions can be evaluated. It was possible to demonstrate that the overall efficiency in nitrogen removal and energy consumption of ml activated sludge plant can be improved.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9325
Author(s):  
Katarzyna Jaromin-Gleń ◽  
Roman Babko ◽  
Tatiana Kuzmina ◽  
Yaroslav Danko ◽  
Grzegorz Łagód ◽  
...  

Reduction of the greenhouse effect is primarily associated with the reduction of greenhouse gas (GHG) emissions. Carbon dioxide (CO2) is one of the gases that increases the greenhouse effect - it is responsible for about half of the greenhouse effect. Significant sources of CO2 are wastewater treatment plants (WWTPs) and waste management, with about 3% contribution to global emissions. CO2 is produced mainly in the aerobic stage of wastewater purification and is a consequence of activated sludge activity. Although the roles of activated sludge components in the purification process have been studied quite well, their quantitative contribution to CO2 emissions is still unknown. The emission of CO2 caused by prokaryotes and eukaryotes over the course of a year (taking into account subsequent seasons) in model sequencing batch reactors (SBR) is presented in this study. In this work, for the first time, we aimed to quantify this contribution of eukaryotic organisms to total CO2 emissions during the WWTP process. It is of the order of several or more ppm. The contribution of CO2 produced by different components of activated sludge in WWTPs can improve estimation of the emissions of GHGs in this area of human activity.


1999 ◽  
Vol 40 (4-5) ◽  
pp. 451-458 ◽  
Author(s):  
J. Banas ◽  
E. Plaza ◽  
W. Styka ◽  
J. Trela

The wastewater treatment plant (WWTP) in Nowy Targ, Poland, is the largest in Europe based on classical sequencing batch reactor (SBR) technology. The plant was completed in April 1995 as one of the essential elements in a program for the protection of the water quality in the Czorsztyn Reservoir. The process technology was designed for application to a typical municipal wastewater with a separate unit to treat tannery wastewater containing chromium. Experience from plant operation showed that the municipal wastewater inflow to the WWTP included tannery wastewater with increasing chromium concentrations, caused by poor wastewater management in the city. The average value in the influent was around 3 mg Cr/l (1996-1997) and showed an increasing trend. Investigations were focused on identification of the factors affecting the process performance. In this paper, evaluation of the treatment efficiency and process performance during 2 years of plant operation is presented, including studies of nitrification, denitrification and biological phosphorus removal. A cycle analysis was performed to investigate the reduction of different parameters during different phases of a cycle. Results of a sludge activity study based on OUR, AUR and NUR tests are presented and discussed.


2006 ◽  
Vol 54 (10) ◽  
pp. 79-86 ◽  
Author(s):  
G. Wandl ◽  
H. Kroiss ◽  
K. Svardal

Two-stage activated sludge plants succeed in stable treatment efficiency concerning carbon removal and nitrification with far less reactor tank volume than conventional single stage systems. In case of large treatment plants this fact is of great economic relevance. Because of the very small specific volume of these two-stage treatment plants in comparison with low loaded single-stage plants, internal cycles have to be applied to ensure sufficient nitrogen removal. Due to these internal cycles two stage activated sludge plants offer many possibilities in terms of process management which results in new process optimisation procedures as compared to conventional single-stage nutrient removal treatment plants. The proposed extension concept for the Main Treatment Plant of Vienna was validated with pilot plant investigations especially with regard to nitrogen removal where it proved to comply with the legal requirements. The operation of the treatment plant can easily be adapted to changes in temperature and sludge volume index occurring in full scale practice. Sludge retention time and aerobic volume in the second stage are controlled in order to secure sufficient nitrification capacity and to optimise nitrogen removal by means of the variation of the loading conditions for the two stages. The investigations confirmed that the specific two-stage activated sludge concept applied in Vienna is an economically advantageous alternative for large wastewater treatment plants with stringent requirements for nitrification and nutrient removal.


Sign in / Sign up

Export Citation Format

Share Document