Influence of secondary settling tank performance on suspended solids mass balance in activated sludge systems

2012 ◽  
Vol 46 (7) ◽  
pp. 2415-2424 ◽  
Author(s):  
M. Patziger ◽  
H. Kainz ◽  
M. Hunze ◽  
J. Józsa
2010 ◽  
Vol 61 (7) ◽  
pp. 1645-1652 ◽  
Author(s):  
G. A. Ekama

The sludge age is the most fundamental and important parameter in the design, operation and control of biological nutrient removal (BNR) activated sludge (AS) systems. Generally, the better the effluent and waste sludge quality required from the system, the longer the sludge age, the larger the biological reactor and the more wastewater characteristics need to be known. Controlling the reactor concentration does not control sludge age, only the mass of sludge in the system. When nitrification is a requirement, sludge age control becomes a requirement and the secondary settling tanks can no longer serve the dual purpose of clarifier and waste activated sludge thickeners. The easiest and most practical way to control sludge age is with hydraulic control by wasting a defined proportion of the reactor volume daily. In AS plants with reactor concentration control, nitrification fails first. With hydraulic control of sludge age, nitrification will not fail, rather the plant fails by shedding solids over the secondary settling tank effluent weirs.


1996 ◽  
Vol 33 (3) ◽  
pp. 185-194 ◽  
Author(s):  
M. Sarioglu ◽  
N. Horan

Anoxic zones are designed for the removal of nitrogen in nitrifying activated sludge plants. This can be carried out either to achieve a nitrogen discharge consent or to eliminate the problem of rising sludges. The rising sludge problem is mostly encountered in medium and small size plants in warm conditions and there is limited information as to the appropriate design of anoxic zones to protect against rising sludges in the secondary sedimentation tanks. Therefore a series of batch experiments were undertaken in order to establish the critical concentration of nitrate-nitrogen which causes rising sludge in the secondary settling tank and the effect of environmental factors such as temperature (15°C to 30°C) and residual carbon source (100 to 600 mg/1 COD) were examined. Based on the results of these experiments an empirical equation was presented which can be used to size an anoxic zone to eliminate rising sludges. The application of this equation at full-scale plants is discussed.


2010 ◽  
Vol 62 (3) ◽  
pp. 701-707 ◽  
Author(s):  
M. Majewsky ◽  
T. Gallé ◽  
L. Zwank ◽  
K. Fischer

The influence of activated sludge quality on the co-metabolic biodegradation of three aminopolycarboxyl acids was investigated for a variety of Luxembourg sewage treatment plants. A combination of biodegradation experiments and respirometric techniques are presented as a reliable approach for the estimation of biokinetics and biological xenobiotic degradation rates that allow for identification of governing parameters such as microbial activity and active biomass. Results showed that biokinetics and degradation rates vary greatly between different plants. The fraction of active biomass on the total suspended solids ranged between 16.9 and 53.7%. Xenobiotic biodegradation rates correlated with microbial activity suggesting a relationship with WWTP performance for carbon and nutrient removal. The biokinetic information can be used to increase the prediction accuracy of xenobiotics removal by individual WWTPs.


1996 ◽  
Vol 34 (5-6) ◽  
pp. 43-50 ◽  
Author(s):  
P. S. Barker ◽  
P. L. Dold

Results of model simulations indicate that without the assumption of COD loss, predictions of oxygen consumption and volatile suspended solids production are significantly over-estimated for biological excess phosphorus removal (BEPR) activated sludge systems (and to a lesser extent anoxic-aerobic systems). These systems apparently consume less oxygen and produce less volatile solids than aerobic systems for the same amount of COD removal. A general model for biological nutrient removal systems has recently been presented by Barker and Dold. Three mechanisms for COD loss are suggested, based on results of COD balances for different types of activated sludge system. Model simulation results with and without the assumption of COD loss are discussed, as well as the influence of influent COD composition on predictions of volatile suspended solids concentration/production and oxygen consumption.


2004 ◽  
Vol 50 (7) ◽  
pp. 179-186 ◽  
Author(s):  
R.J. Vestner ◽  
F. Wolfgang Günthert

Full-scale investigations at a WWTP with a two-stage secondary settling tank process revealed relationships between significant operating parameters and performance in terms of effluent suspended solids concentration. Besides common parameters (e.g. surface overflow rate and sludge volume loading rate) feed SS concentration and flocculation time must be considered. Concentration of the return activated sludge may help to estimate the performance of existing secondary settling tanks.


1994 ◽  
Vol 30 (2) ◽  
pp. 219-228 ◽  
Author(s):  
C. Dahl ◽  
T. Larsen ◽  
O. Petersen

A numerical model and measurements of flow and settling in activated sludge suspension is presented. The numerical model is an attempt to describe the complex and interrelated hydraulic and sedimentation phenomena by describing the turbulent flow field and the transport/dispersion of suspended sludge. Phenomena such as free and hindered settling and the Bingham plastic characteristic of activated sludge suspensions are included in the numerical model. Further characterisation and test tank experiments are described. The characterisation experiments were designed to measure calibration parameters for model description of settling and density differences. In the test tank experiments, flow velocities and suspended sludge concentrations were measured with different tank inlet geometry and hydraulic and sludge loads. The test tank experiments provided results for the calibration of the numerical model and for comparing measured and calculated results. The numerical model could, fairly accurately, predict the measured results and both the measured and calculated results showed a flow field pattern identical to the flow fields in full-scale secondary settling tanks. A specific calibration of the Bingham plastic characteristic was needed and further knowledge of activated sludge suspension rheology will be necessary to improve the numerical model.


2006 ◽  
Vol 54 (10) ◽  
pp. 55-66 ◽  
Author(s):  
M.R. Alavi Moghaddam ◽  
Y. Guan ◽  
H. Satoh ◽  
T. Mino

Coarse pore filtration activated sludge process is a type of hybrid process in which the secondary settling tank of the conventional activated sludge process is replaced by non- woven and coarse pore filter modules. The filter has pores, which are irregular in shape, and much bigger than micro-filtration membrane pores in size. The objective of the study is to find out the effect of the microbial community structure on filter clogging in the coarse pore filtration activated sludge process under high MLSS concentration in aerobic and anoxic/aerobic (A/A) conditions. Filter clogging started from day 65 and 70 in the A/A and aerobic process, respectively, but it was more severe in the A/A process compared to that in the aerobic process. EPS contents of sludge did not change significantly during the operation in both processes, and did not have a crucial effect on the observed filter clogging. There was no strong evidence for direct effect of the type and number of metazoa on filter clogging. The main difference between aerobic sludge and A/A sludge during the filter clogging period was the relative abundance of filamentous bacteria. According to the obtained results, it can be concluded that a higher presence of filamentous bacteria could reduce the severity of filter clogging in a coarse pore filtration activated sludge process.


2006 ◽  
Vol 54 (8) ◽  
pp. 101-109 ◽  
Author(s):  
G.A. Ekama ◽  
M.C. Wentzel ◽  
S.W. Sötemann

From an experimental and theoretical investigation of the continuity of influent inorganic suspended solids (ISS) along the links connecting the primary settling tank (PST), fully aerobic or N removal activated sludge (AS) and anaerobic and aerobic sludge digestion unit operations, it was found that the influent wastewater (fixed) ISS concentration is conserved through primary sludge anaerobic digestion, activated sludge and aerobic digestion unit operations. However, the measured ISS flux at different stages through a series of wastewater treatment plant (WWTP) unit operations is not equal to the influent ISS flux, because the ordinary heterotrophic organisms (OHO) biomass contributes to the ISS flux by differing amounts depending on the active fraction of the VSS solids at that stage.


Sign in / Sign up

Export Citation Format

Share Document