Microbial adaptation and response to high ammonia concentrations and precipitates during anaerobic digestion under psychrophilic and mesophilic conditions

2021 ◽  
pp. 117596
Author(s):  
Estefanny Quispe-Cardenas ◽  
Shane Rogers
Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 787
Author(s):  
Anna Lymperatou ◽  
Niels B. Rasmussen ◽  
Hariklia N. Gavala ◽  
Ioannis V. Skiadas

Swine manure mono-digestion results in relatively low methane productivity due to the low degradation rate of its solid fraction (manure fibers), and due to the high ammonia and water content. The aqueous ammonia soaking (AAS) pretreatment of manure fibers has been proposed for overcoming these limitations. In this study, continuous anaerobic digestion (AD) of manure mixed with optimally AAS-treated manure fibers was compared to the AD of manure mixed with untreated manure fibers. Due to lab-scale pumping restrictions, the ratio of AAS-optimally treated manure fibers to manure was only 1/3 on a total solids (TS) basis. However, the biogas productivity and methane yield were improved by 17% and 38%, respectively, also confirming the predictions from a simplified 1st order hydrolysis model based on batch experiments. Furthermore, an improved reduction efficiency of major organic components was observed for the digester processing AAS-treated manure fibers compared to the non-treated one (e.g., 42% increased reduction for cellulose fraction). A preliminary techno-economic analysis of the proposed process showed that mixing raw manure with AAS manure fibers in large-scale digesters could result in a 72% increase of revenue compared to the AD of manure mixed with untreated fibers and 135% increase compared to that of solely manure.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 648
Author(s):  
Erik Samuel Rosas-Mendoza ◽  
Andrea Alvarado-Vallejo ◽  
Norma Alejandra Vallejo-Cantú ◽  
Raúl Snell-Castro ◽  
Sergio Martínez-Hernández ◽  
...  

The aim of this paper is to describe a study of the anaerobic digestion of industrial citrus solid waste (ISCW) in both batch and semi-continuous modes for the production of bioenergy without the elimination of D-limonene. The study was conducted at the pilot plant level in an anaerobic reactor with a working volume of 220 L under mesophilic conditions of 35 ± 2 °C. Cattle manure (CM) was used as the inoculum. Three batches were studied. The first batch had a CM/ISCW ratio of 90/10, and Batches 2 and 3 had CM/ISCW ratios of 80/20 and 70/30, respectively. In the semi-continuous mode an OLR of approximately 8 g total chemical oxygen demand (COD)/Ld (4.43 gVS/Ld) was used. The results showed that 49%, 44%, and 60% of volatile solids were removed in the batch mode, and 35% was removed in the semi-continuous mode. In the batch mode, 0.322, 0.382, and 0.316 LCH4 were obtained at STP/gVSremoved. A total of 24.4 L/d (34% methane) was measured in the semi-continuous mode. Bioenergy potentials of 3.97, 5.66, and 8.79 kWh were obtained for the respective batches, and 0.09 kWh was calculated in the semi-continuous mode. The citrus industry could produce 37 GWh per season. A ton of processed oranges has a bioenergy potential of 162 kWh, which is equivalent to 49 kWh of available electricity ($3.90).


2008 ◽  
Vol 58 (9) ◽  
pp. 1757-1763 ◽  
Author(s):  
J. Guendouz ◽  
P. Buffière ◽  
J. Cacho ◽  
M. Carrère ◽  
J.-P. Delgenes

Two experiments were undertaken in three different experimental set-ups in order to compare them: an industrial 21-m3 pilot reactor, a new 40-ℓ laboratory pilot reactor and bmp type plasma bottles. Three consecutive batch dry digestion tests of municipal solid waste were performed under mesophilic conditions with the same feedstock in all vessels. Biogas and methane production at the end of the tests were similar (around 200 m3 CH4STP/tVS) for both pilot reactors and were different from the bottle tests. The dynamics of methane production and VFA accumulation concurred. However, the maximal levels of VFA transitory accumulation varied between reactors and between runs in a same reactor. Ammonia levels were similar in both reactors. These results show that the new reactor accurately imitates the conditions found in the larger one. Adaptation of microorganisms to the waste and operating conditions was also pointed out along the consecutive batches. Thermophilic semi-continuous tests were performed in both reactors with similar conditions. The methane production efficiencies were similar.


2014 ◽  
Vol 158 ◽  
pp. 111-118 ◽  
Author(s):  
Janina Böske ◽  
Benjamin Wirth ◽  
Felix Garlipp ◽  
Jan Mumme ◽  
Herman Van den Weghe

2015 ◽  
Vol 72 (8) ◽  
pp. 1398-1403 ◽  
Author(s):  
Glenda Cea-Barcia ◽  
Gloria Moreno ◽  
Germán Buitrón

The anaerobic digestion of mixed indigenous microalgae, grown in a secondary effluent, was evaluated in batch tests at mesophilic (35°C) and thermophilic (50°C) conditions. Under mesophilic conditions, specific methane production varied from 178 to 207 mL CH4/g volatile solids (VS) and the maximum production rate varied from 8.8 to 26.1 mL CH4/(gVS day), depending on the type of microalgae culture. Lower methane parameters were observed in those cultures where Scenedesmus represents more than 95% of the microalge. The culture with the lowest digestion performances under mesophilic conditions was studied under thermophilic conditions. The increase in the incubation temperature significantly increased the specific methane production (390 mL CH4/g VS) and rate (26.0 mL CH4/(gVS day)). However, under thermophilic conditions a lag period of 30 days was observed.


2013 ◽  
Vol 131 ◽  
pp. 210-217 ◽  
Author(s):  
Si-Kyung Cho ◽  
Wan-Taek Im ◽  
Dong-Hoon Kim ◽  
Moon-Hwan Kim ◽  
Hang-Sik Shin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document