The tribological performance of DLC-based coating under the solid–liquid lubrication system with sand-dust particles

Wear ◽  
2013 ◽  
Vol 297 (1-2) ◽  
pp. 972-985 ◽  
Author(s):  
Jianwei Qi ◽  
Liping Wang ◽  
Fengyuan Yan ◽  
Qunji Xue
Author(s):  
Dong shan Li ◽  
Ning Kong ◽  
Ruishan Li ◽  
Boyang Zhang ◽  
Yongshun Zhang ◽  
...  

Abstract Judicious selection of additives having chemical and physical compatibility with the DLC films may help improving the triboligical properties and durability life of DLC-oil composite lubrication systems. In this study, Cu nanoparticles were added to PAO6 base oil to compose a solid-liquid composite lubrication system with W-DLC film. The effects of nanoparticle concentration, test temperature and applied load on tribological performance were systematically studied by a ball-on-disk friction test system. The tribological results illustrated that Cu nanoparticles could lower the coefficient of friction (COF) and dramatically reduce the wear rates of W-DLC films. The optimal tribological behavior was achieved for the 0.1 wt.% concentration under 30 ℃ and the applied load of 100 N. The test temperature and applied load were vital influencing factors of the solid–liquid lubrication system. The bearing effect and soft colloidal abrasive film of spherical Cu nanoparticle contributed to the excellent tribological performance of the composite lubrication system under mild test conditions, meanwhile, the local delamination of W-DLC film and oxidation were the main causes of the friction failure under harsh test conditions. With test temperature and applied loads increase the degree of graphitization of the W-DLC film increased. In conclusion, there are several pivotal factors affecting the tribological performance of solid–liquid lubrication systems, including the number of nanoparticles between rubbing contact area, graphitization of the worn W-DLC films, tribofilms on the worn ball specimens and oxidation formed in friction test, and the dominant factor is determined by the testing condition.


Author(s):  
Fan Yang ◽  
Yuting Li ◽  
Zhaofan Yue ◽  
Qingbo Fan ◽  
Hao Li ◽  
...  

Abstract Solid-liquid composite lubrication system has attracted an increased interest for low friction and wear. Nevertheless, the effect of mechanical and surface properties of the solid materials, especially the mechanical and surface properties governed by doping elements, on the tribological performance solid-liquid composite lubrication system is still not well comprehended. Here, we reported the effect of W content on the mechanical and surface properties of W-DLC coatings as well as the tribological properties of W-DLC coatings under (choline chloride-urea and choline chloride-thiourea) deep eutectic solvents lubrication. Although the wear of W-DLC coatings under dry friction increases with W content, the wear under DESs is slight when coatings show excellent wettability to DESs or a DES-derived tribochemical film is formed. We demonstrate that the tribological behavior of W-DLC and DESs composite lubrication system is related to the mechanical properties of W-DLC coatings together with the contact angle and tribochemical interaction between DESs and W-DLC coatings.


2014 ◽  
Vol 52 (3) ◽  
pp. 244-249 ◽  
Author(s):  
Yoshimi Kobayashi ◽  
Akinori Shimada ◽  
Mai Nemoto ◽  
Takehito Morita ◽  
Altanchimeg Adilbish ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Minghua Cao ◽  
Huiqin Wang ◽  
Yu Yao ◽  
Shanglin Hou

Sand-dust weather conditions are considered the primary challenge to free-space optical (FSO) communications. It may cause severe attenuation that is malignant to FSO link performance. This study investigates the impact of sand-dust particles on a laser signal using the radiation propagation method and the small-angle approximation method. Numerical simulation shows that in sand-dust weather conditions, the multiple scattering effect is dominant and results in signal pulse delay and pulse broadening. Furthermore, the signal attenuation follows a negative exponential distribution to the laser wavelength. Superior performance can be achieved by employing a longer wavelength laser to reduce pulse delay and mutual interference.


2014 ◽  
Author(s):  
Nishant Mohan ◽  
Mayank Sharma ◽  
Ramesh Singh ◽  
Naveen Kumar

Wear ◽  
2011 ◽  
Vol 271 (5-6) ◽  
pp. 899-910 ◽  
Author(s):  
Jianwei Qi ◽  
Liping Wang ◽  
Yunfeng Wang ◽  
Jibin Pu ◽  
Fengyuan Yan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document