A new multicontact tribometer for deterministic dynamic friction identification

Wear ◽  
2013 ◽  
Vol 300 (1-2) ◽  
pp. 126-135 ◽  
Author(s):  
J.L. Dion ◽  
G. Chevallier ◽  
O. Penas ◽  
F. Renaud
Author(s):  
Ray Huffaker ◽  
Marco Bittelli ◽  
Rodolfo Rosa

In this chapter, we describe how highly erratic dynamic behavior can arise from a nonlinear logistic map, and how this apparently random behavior is governed by a surprising order. With this lesson in mind, we should not be overly surprised that highly erratic and random appearing observed data might also be generated by parsimonious deterministic dynamic systems. At a minimum, we contend that researchers should apply NLTS to test for this possibility. We also introduced tools to analyze dynamic behavior that form the foundation for NLTS. In particular, we have stressed the quite unexpected capability to achieve some form of predictability even with only one trajectory at hand. In subsequent chapters, we treat known nonlinear dynamical systems as unknown, and investigate how NLTS methods rely on a single solution (or multiple solutions) generated by them to reconstruct equivalent systems. This is a conventional approach in the literature for seeing how NLTS methods work since we know what needs to be reconstructed.


Friction ◽  
2021 ◽  
Author(s):  
Xinfeng Tan ◽  
Dan Guo ◽  
Jianbin Luo

AbstractDynamic friction occurs not only between two contact objects sliding against each other, but also between two relative sliding surfaces several nanometres apart. Many emerging micro- and nano-mechanical systems that promise new applications in sensors or information technology may suffer or benefit from noncontact friction. Herein we demonstrate the distance-dependent friction energy dissipation between the tip and the heterogeneous polymers by the bimodal atomic force microscopy (AFM) method driving the second order flexural and the first order torsional vibration simultaneously. The pull-in problem caused by the attractive force is avoided, and the friction dissipation can be imaged near the surface. The friction dissipation coefficient concept is proposed and three different contact states are determined from phase and energy dissipation curves. Image contrast is enhanced in the intermediate setpoint region. The work offers an effective method for directly detecting the friction dissipation and high resolution images, which overcomes the disadvantages of existing methods such as contact mode AFM or other contact friction and wear measuring instruments.


2014 ◽  
Vol 62 (1) ◽  
pp. 91-102
Author(s):  
B. Blachowski ◽  
W. Gutkowski

Abstract In this study, a relatively simple method of discrete structural optimization with dynamic loads is presented. It is based on a tree graph, representing discrete values of the structural weight. In practical design, the number of such values may be very large. This is because they are equal to the combination numbers, arising from numbers of structural members and prefabricated elements. The starting point of the method is the weight obtained from continuous optimization, which is assumed to be the lower bound of all possible discrete weights. Applying the graph, it is possible to find a set of weights close to the continuous solution. The smallest of these values, fulfilling constraints, is assumed to be the discrete minimum weight solution. Constraints can be imposed on stresses, displacements and accelerations. The short outline of the method is presented in Sec. 2. The idea of discrete structural optimization by means of graphs. The knowledge needed to apply the method is limited to the FEM and graph representation. The paper is illustrated with two examples. The first one deals with a transmission tower subjected to stochastic wind loading. The second one with a composite floor subjected to deterministic dynamic forces, coming from the synchronized crowd activities, like dance or aerobic.


2021 ◽  
Vol 69 (3) ◽  
Author(s):  
Gianluca Costagliola ◽  
Tobias Brink ◽  
Julie Richard ◽  
Christian Leppin ◽  
Aude Despois ◽  
...  

AbstractWe report experimental measurements of friction between an aluminum alloy sliding over steel with various lubricant densities. Using the topography scans of the surfaces as input, we calculate the real contact area using the boundary element method and the dynamic friction coefficient by means of a simple mechanistic model. Partial lubrication of the surfaces is accounted for by a random deposition model of oil droplets. Our approach reproduces the qualitative trends of a decrease of the macroscopic friction coefficient with applied pressure, due to a larger fraction of the micro-contacts being lubricated for larger loads. This approach relates direct measurements of surface topography to realistic distributions of lubricant, suggesting possible model extensions towards quantitative predictions.


Vehicles ◽  
2021 ◽  
Vol 3 (2) ◽  
pp. 212-232
Author(s):  
Ludwig Herzog ◽  
Klaus Augsburg

The important change in the transition from partial to high automation is that a vehicle can drive autonomously, without active human involvement. This fact increases the current requirements regarding ride comfort and dictates new challenges for automotive shock absorbers. There exist two common types of automotive shock absorber with two friction types: The intended viscous friction dissipates the chassis vibrations, while the unwanted solid body friction is generated by the rubbing of the damper’s seals and guides during actuation. The latter so-called static friction impairs ride comfort and demands appropriate friction modeling for the control of adaptive or active suspension systems. In this article, a simulation approach is introduced to model damper friction based on the most friction-relevant parameters. Since damper friction is highly dependent on geometry, which can vary widely, three-dimensional (3D) structural FEM is used to determine the deformations of the damper parts resulting from mounting and varying operation conditions. In the respective contact zones, a dynamic friction model is applied and parameterized based on the single friction point measurements. Subsequent to the parameterization of the overall friction model with geometry data, operation conditions, material properties and friction model parameters, single friction point simulations are performed, analyzed and validated against single friction point measurements. It is shown that this simulation method allows for friction prediction with high accuracy. Consequently, its application enables a wide range of parameters relevant to damper friction to be investigated with significantly increased development efficiency.


1995 ◽  
Vol 117 (2) ◽  
pp. 255-260 ◽  
Author(s):  
Andreas A. Polycarpou ◽  
Andres Soom

The instantaneous normal motion between bodies in a sliding contact is an important variable in determining dynamic friction under unsteady sliding conditions. In order to model friction under dynamic conditions, it is therefore necessary to combine a dynamic model of the sliding system with an accurate model of the friction process. In the present work, the nonlinear normal dynamics of a friction test apparatus are described by a linearized model at a particular steady loading and sliding condition in a mixed or boundary-lubricated regime. The geometry is a line contact. The Hertzian bulk contact compliance and film and asperity damping and stiffness characteristics are included as discrete elements. In Part I of the paper, a fifth-order model is developed for the normal dynamics of the system, using both the Eigensystem Realization Algorithm (ERA) and classical experimental modal analysis techniques. In Part II, this system model is combined with a friction model, developed independently, to describe dynamic friction forces under both harmonic and impulsive applied normal loads.


Sign in / Sign up

Export Citation Format

Share Document