Down-Regulation of Mir-145 Improves Learning and Memory Abilities in Epileptic Rats by Regulating Hippocampal Neuron Apoptosis

2019 ◽  
Vol 122 ◽  
pp. e1432-e1438
Author(s):  
Qingping Zhao ◽  
Changyou Yin ◽  
Yuan Yuan ◽  
Hongtao Zhang ◽  
Lu Teng
2021 ◽  
Vol 12 ◽  
Author(s):  
Li-Ling He ◽  
Yun-Cui Wang ◽  
Ya-Ting Ai ◽  
Ling Wang ◽  
Si-Meng Gu ◽  
...  

Qiangji Decoction (QJD), a classic formula, has been widely used to treat brain aging–related neurodegenerative diseases. However, the mechanisms underlying QJD’s improvement in cognitive impairment of neurodegenerative diseases remain unclear. In this study, we employed D-galactose to establish the model of brain aging by long-term D-galactose subcutaneous injection. Next, we investigated QJD’s effect on cognitive function of the model of brain aging and the mechanisms that QJD suppressing neuroinflammation as well as improving neurodegenerative changes and hippocampal neuron apoptosis. The mice of brain aging were treated with three different dosages of QJD (12.48, 24.96, and 49.92 g/kg/d, respectively) for 4 weeks. Morris water maze was used to determine the learning and memory ability of the mice. HE staining and FJB staining were used to detect the neurodegenerative changes. Nissl staining and TUNEL staining were employed to detect the hippocampal neuron apoptosis. The contents of TNF-α, IL-1β, and IL-6 in the hippocampus were detected by using ELISA. Meanwhile, we employed immunofluorescence staining to examine the levels of GFAP and IBA1 in the hippocampus. Besides, the protein expression levels of Bcl-2, Bax, caspase-3, cleaved caspase-3, AMPKα, p-AMPKα-Thr172, SIRT1, IκBα, NF-κB p65, p-IκBα-Ser32, and p-NF-κB p65-Ser536 in the hippocampus of different groups were detected by Western blot (WB). Our findings showed that the QJD-treated groups, especially the M-QJD group, mitigated learning and memory impairments of the model of brain aging as well as the improvement of neurodegenerative changes and hippocampal neuron apoptosis. Moreover, the M-QJD markedly attenuated the neuroinflammation by regulating the AMPK/SIRT1/NF-κB signaling pathway. Taken together, QJD alleviated neurodegenerative changes and hippocampal neuron apoptosis in the model of brain aging via regulating the AMPK/SIRT1/NF-κB signaling pathway.


2020 ◽  
Vol 38 (2) ◽  
pp. 434-446
Author(s):  
Jinting Wang ◽  
Tianwei Wu ◽  
Lan Ma ◽  
Ying Guo ◽  
Yali Huang ◽  
...  

2016 ◽  
Vol 38 (4) ◽  
pp. 264-276 ◽  
Author(s):  
Thomas W. Bastian ◽  
William C. von Hohenberg ◽  
Daniel J. Mickelson ◽  
Lorene M. Lanier ◽  
Michael K. Georgieff

Iron deficiency (ID), with and without anemia, affects an estimated 2 billion people worldwide. ID is particularly deleterious during early-life brain development, leading to long-term neurological impairments including deficits in hippocampus-mediated learning and memory. Neonatal rats with fetal/neonatal ID anemia (IDA) have shorter hippocampal CA1 apical dendrites with disorganized branching. ID-induced dendritic structural abnormalities persist into adulthood despite normalization of the iron status. However, the specific developmental effects of neuronal iron loss on hippocampal neuron dendrite growth and branching are unknown. Embryonic hippocampal neuron cultures were chronically treated with deferoxamine (DFO, an iron chelator) beginning at 3 days in vitro (DIV). Levels of mRNA for Tfr1 and Slc11a2, iron-responsive genes involved in iron uptake, were significantly elevated in DFO-treated cultures at 11DIV and 18DIV, indicating a degree of neuronal ID similar to that seen in rodent ID models. DFO treatment decreased mRNA levels for genes indexing dendritic and synaptic development (i.e. BdnfVI,Camk2a,Vamp1,Psd95,Cfl1, Pfn1,Pfn2, and Gda) and mitochondrial function (i.e. Ucp2,Pink1, and Cox6a1). At 18DIV, DFO reduced key aspects of energy metabolism including basal respiration, maximal respiration, spare respiratory capacity, ATP production, and glycolytic rate, capacity, and reserve. Sholl analysis revealed a significant decrease in distal dendritic complexity in DFO-treated neurons at both 11DIV and 18DIV. At 11DIV, the length of primary dendrites and the number and length of branches in DFO-treated neurons were reduced. By 18DIV, partial recovery of the dendritic branch number in DFO-treated neurons was counteracted by a significant reduction in the number and length of primary dendrites and the length of branches. Our findings suggest that early neuronal iron loss, at least partially driven through altered mitochondrial function and neuronal energy metabolism, is responsible for the effects of fetal/neonatal ID and IDA on hippocampal neuron dendritic and synaptic maturation. Impairments in these neurodevelopmental processes likely underlie the negative impact of early life ID and IDA on hippocampus-mediated learning and memory.


Sign in / Sign up

Export Citation Format

Share Document