scholarly journals Small RNA in situ hybridization in Caenorhabditis elegans, combined with RNA-seq, identifies germline-enriched microRNAs

2016 ◽  
Vol 418 (2) ◽  
pp. 248-257 ◽  
Author(s):  
Tamara J. McEwen ◽  
Qiuming Yao ◽  
Sijung Yun ◽  
Chin-Yung Lee ◽  
Karen L. Bennett
2021 ◽  
Vol 4 (1) ◽  
pp. 20
Author(s):  
Mujeeb Shittu ◽  
Tessa Steenwinkel ◽  
William Dion ◽  
Nathan Ostlund ◽  
Komal Raja ◽  
...  

RNA in situ hybridization (ISH) is used to visualize spatio-temporal gene expression patterns with broad applications in biology and biomedicine. Here we provide a protocol for mRNA ISH in developing pupal wings and abdomens for model and non-model Drosophila species. We describe best practices in pupal staging, tissue preparation, probe design and synthesis, imaging of gene expression patterns, and image-editing techniques. This protocol has been successfully used to investigate the roles of genes underlying the evolution of novel color patterns in non-model Drosophila species.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
S Greco ◽  
A Made' ◽  
A.S Tascini ◽  
J Garcia Manteiga ◽  
S Castelvecchio ◽  
...  

Abstract Background BACE1 encodes for β-secretase, the key enzyme involved in β-amyloid (βA) generation, a peptide well known for its involvement in Alzheimer's disease (AD). Of note, heart failure (HF) and AD share several risk factors and effectors. We recently showed that, in the heart of ischemic HF patients, the levels of both BACE1, its antisense RNA BACE1-AS and βA are all increased. BACE1-AS positively regulates the expression of BACE1, triggering βA intracellular accumulation, and its overexpression or βA administration induce cardiovascular-cell apoptosis. Aim To characterize the transcripts of the BACE1 locus and to investigate the molecular mechanisms underpinning BACE1-AS regulation of cell vitality. Methods By PCR and sequencing, we studied in the heart the expression of a variety of antisense BACE1 transcripts predicted by FANTOM CAT Epigenome. We studied BACE1 RNA stability by BrdU pulse chase experiments (BRIC assay). The cellular localization of BACE1-AS RNA was investigated by in situ hybridization assay. BACE1-AS binding RNAs were evaluated by BACE1-AS-MS2-Tag pull-down in AC16 cardiomyocytes followed by RNA-seq. Enriched RNAs were validated by qPCR and analysed by bioinformatics comparison with publicly available gene expression datasets of AD brains. Results We readily detected several antisense BACE1 transcripts expressed in AC16 cardiomyocytes; however, only BACE1-AS RNAs overlapping exon 6 of BACE1 positively regulated BACE1 mRNA levels, acting by increasing its stability. BACE1 silencing reverted cell apoptosis induced by BACE1-AS expression, indicating that BACE1 is a functional target of BACE1-AS. However, in situ hybridization experiments indicated a mainly nuclear localization for BACE1-AS, which displayed a punctuated distribution, compatible with chromatin association and indicative of potential additional targets. To identify other BACE1-AS binding RNAs, a BACE1-AS-MS2-tag pull-down was performed and RNA-seq of the enriched RNAs identified 698 BACE1-AS interacting RNAs in cardiomyocytes. Gene ontology of the BACE1-AS binding RNAs identified categories of relevance for cardiovascular or neurological diseases, such as dopaminergic synapse, glutamatergic synapse, calcium signalling pathway and voltage-gated channel activity. In spite of the differences between brain and heart transcriptomes, BACE1-AS-interacting RNAs identified in cardiomyocytes were significantly enriched in transcripts differentially expressed in AD brains as well as in RNAs expressed by enhancer genomic regions that are significantly hypomethylated in AD brains. Conclusions These data shed a new light on the complexity of BACE1-AS locus and on the existence of RNAs interacting with BACE1-AS with a potential as enhancer-RNAs. Moreover, the dysregulation of the BACE1-AS/BACE1/βA pathway may be a common disease mechanism shared by cardiovascular and neurological degenerative diseases. Funding Acknowledgement Type of funding source: Public grant(s) – National budget only. Main funding source(s): Italian Health Ministery_Ricerca Corrente 2020


Author(s):  
Ya-Ping Xu ◽  
Ze-Ning Dong ◽  
Si-Wei Wang ◽  
Yi-Min Zheng ◽  
Chi Zhang ◽  
...  

Abstract Background Accumulating evidence indicates that circRNAs may serve as essential regulators in the progression of several human cancers, but the function and mechanism of circRNAs in intrahepatic cholangiocarcinoma (ICC) are largely unknown. Methods RNA-seq was used to assess differentially expressed circRNAs between 4 ICC and peritumor tissues. Quantitative RT-PCR and in situ hybridization were used to determine the circHMGCS1–016 expression in ICC tissues. The function and mechanism of circHMGCS1–016 were further identified via in vivo experiments. The clinical characteristics and prognostic significance of circHMGCS1–016 were analyzed by a retrospective study. The functions of circHMGCS1–016 were assessed via modifying circRNA expression in ICC cells. Moreover, the molecular mechanisms of circHMGCS1–016 in ICC cells were explored by circRNA precipitation, miRNA immunoprecipitation, SILAC and luciferase reporter assays. Results We identified that compared with peritumor tissues, ICC tissues expressed hsa_circ_0008621 (circHMGCS1–016) high by RNA-seq, which was further identified by qRT-PCR and in situ hybridization. Moreover, the expression of circHMGCS1–016 was revealed to be associated with survival and recurrence of ICC patients. By regulating circHMGCS1–016 expression, we found that elevated circHMGCS1–016 promoted ICC development both in vitro and in vivo. By SILAC and circRNA-pull down, we demonstrated that circHMGCS1–016 induced ICC cell invasion and reshaped the tumor immune microenvironment via the miR-1236-3p/CD73 and GAL-8 axis. In ICC tissues, we uncovered that a high level of circHMGCS1–016 was positively associated with CD73 and GAL-8 expression and negatively related to the CD8+ T cells infiltration, which was further validated by establishing a humanized mouse tumor model. Importantly, we displayed that ICC patients with high levels of circHMGCS1–016 in tumor tissues benefited less from anti-PD1 treatment compared to those with low levels of circHMGCS1–016. Conclusions CircHMGCS1–016 is a forceful contributor in ICC development and immune tolerance via miR-1236-3p/CD73 and GAL-8 axis. CircHMGCS1–016 can be explored as a new potential biomarker and therapeutic target for PD1-resistant ICC.


Development ◽  
1989 ◽  
Vol 107 (3) ◽  
pp. 611-621 ◽  
Author(s):  
S.K. De ◽  
M.T. McMaster ◽  
S.K. Dey ◽  
G.K. Andrews

Oligodeoxyribonucleotide excess solution hybridization, Northern blot and in situ hybridization were used to analyze metallothionein gene expression in mouse decidua and placentae during gestation. Metallothionein (MT) -I and -II mRNA levels were constitutively elevated, 11- and 13-fold, respectively, relative to the adult liver, in the deciduum (D8), and decreased coordinately about 6-fold during the period of development when the deciduum is replaced by the developing placenta (D10-16). Coincident with this decline, levels of MT mRNA increased dramatically in the visceral yolk sac endoderm. In situ hybridization established that MT-I mRNA was present at low levels in the uterine luminal epithelium (D4), but was elevated at the site of embryo implantation exclusively in the primary decidual zone by D5, and then in the secondary decidual zone (D6-8). Although low levels of MT mRNA were detected in total placental RNA, in situ hybridization revealed constitutively high levels in the outer placental spongiotrophoblasts. Analysis of pulse-labeled proteins from decidua and placentae established that these tissues are active in the synthesis of MT. The constitutively high levels of MT mRNA in decidua were only slightly elevated following injection of cadmium (Cd) and/or zinc (Zn), whereas in placentae they increased several-fold. MT mRNA levels were equally high in decidua and experimentally induced deciduomata (D8) which establishes that decidual MT gene expression is not dependent on the presence of the embryo or some embryo-derived factor. Although the functional role of MT during development is speculative, these results establish the concept that, from the time of implantation to late in gestation, the mouse embryo is surrounded by cells, interposed between the maternal and embryonic environments, which actively express the MT genes. This suggests that MT plays an important role in the establishment and maintenance of normal pregnancy.


Sign in / Sign up

Export Citation Format

Share Document