scholarly journals Variability in β-catenin pulse dynamics in a stochastic cell fate decision in C. elegans

2020 ◽  
Vol 461 (2) ◽  
pp. 110-123 ◽  
Author(s):  
Jason R. Kroll ◽  
Jasonas Tsiaxiras ◽  
Jeroen S. van Zon
2018 ◽  
Author(s):  
Jason R. Kroll ◽  
Jasonas Tsiaxiras ◽  
Jeroen S. van Zon

AbstractDuring development, cell fate decisions are often highly stochastic, but with the frequency of the different possible fates tightly controlled. To understand how signaling networks control the cell fate frequency of such random decisions, we studied the stochastic decision of the Caenorhabditis elegans P3.p cell to either fuse to the hypodermis or assume vulva precursor cell fate. Using time-lapse microscopy to measure the single-cell dynamics of two key inhibitors of cell fusion, the Hox gene LIN-39 and Wnt signaling through the β-catenin BAR-1, we uncovered significant variability in the dynamics of LIN-39 and BAR-1 levels. Most strikingly, we observed that BAR-1 accumulated in a single, 1-4 hour pulse at the time of the P3.p cell fate decision, with strong variability both in pulse slope and time of pulse onset. We found that the time of BAR-1 pulse onset was delayed relative to the time of cell fusion in mutants with low cell fusion frequency, linking BAR-1 pulse timing to cell fate outcome. Overall, a model emerged where animal-to-animal variability in LIN-39 levels and BAR-1 pulse dynamics biases cell fate by modulating their absolute level at the time cell fusion is induced. Our results highlight that timing of cell signaling dynamics, rather than its average level or amplitude, could play an instructive role in determining cell fate.Article summaryWe studied the stochastic decision of the Caenorhabditis elegans P3.p cell to either fuse to the hypodermis or assume vulva precursor cell fate. We uncovered significant variability in the dynamics of LIN-39/Hox and BAR-1/β-catenin levels, two key inhibitors of cell fusion. Surprisingly, we observed that BAR-1 accumulated in a 1-4 hour pulse at the time of the P3.p cell fate decision, with variable pulse slope and time of pulse onset. Our work suggests a model where animal-to-animal variability in LIN-39 levels and BAR-1 pulse dynamics biases cell fate by modulating their absolute level at the time cell fusion is induced.


2019 ◽  
Vol 29 (18) ◽  
pp. 3094-3100.e4 ◽  
Author(s):  
Michelle A. Attner ◽  
Wolfgang Keil ◽  
Justin M. Benavidez ◽  
Iva Greenwald

Author(s):  
N. T. Chartier ◽  
A. Mukherjee ◽  
J. Pfanzelter ◽  
S. Fürthauer ◽  
B. T. Larson ◽  
...  

AbstractOocytes are large and resourceful. During oogenesis some germ cells grow, typically at the expense of others that undergo apoptosis. How germ cells are selected to live or die out of a homogeneous population remains unclear. Here we show that this cell fate decision in C. elegans is mechanical and related to tissue hydraulics. Germ cells become inflated when the pressure inside them is lower than in the common cytoplasmic pool. This condition triggers a hydraulic instability which amplifies volume differences and causes some germ cells to grow and others to shrink. Shrinking germ cells are extruded and die, as we demonstrate by reducing germ cell volumes via thermoviscous pumping. Together, this reveals a robust mechanism of mechanochemical cell fate decision making in the germline.


Cell ◽  
1989 ◽  
Vol 57 (7) ◽  
pp. 1237-1245 ◽  
Author(s):  
Geraldine Seydoux ◽  
Iva Greenwald

Cell ◽  
1994 ◽  
Vol 79 (7) ◽  
pp. 1187-1198 ◽  
Author(s):  
Hilary A. Wilkinson ◽  
Kevin Fitzgerald ◽  
Iva Greenwald

Development ◽  
1996 ◽  
Vol 122 (11) ◽  
pp. 3617-3626 ◽  
Author(s):  
A.P. Newman ◽  
J.G. White ◽  
P.W. Sternberg

We have undertaken electron micrographic reconstruction of the Caenorhabditis elegans hermaphrodite uterus and determined the correspondence between cells defined by their lineage history and differentiated cell types. In this organ, many cells do not move during morphogenesis and the cell lineage may function to put cells where they are needed. Differentiated uterine cell types include the toroidal ut cells that make structural epithelium, and specialized utse and uv cells that make the connection between the uterus and the vulva. A cell fate decision in which the anchor cell (AC) induces adjacent ventral uterine intermediate precursor cells to adopt the pi fate, rather than the ground state rho, has profound consequences for terminal differentiation: all pi progeny are directly involved in making the uterine-vulval connection whereas all rho progeny contribute to ut toroids or the uterine-spermathecal valve. In addition to specifying certain uterine cell fates, the AC also induces the vulva. Its multiple inductions thereby function to coordinate the connection of an internal to an external epithelium. The AC induces the pi cells and ultimately fuses with a subset of their progeny. This is an example of reciprocal cell-cell interaction that can be studied at single cell resolution. The AC is thus a transitory cell type that plays a pivotal role in organizing the morphogenesis of the uterine-vulval connection.


Sign in / Sign up

Export Citation Format

Share Document