Importin α/β-mediated nuclear protein import is regulated in a cell cycle-dependent manner

2004 ◽  
Vol 297 (1) ◽  
pp. 285-293 ◽  
Author(s):  
Noriko Yasuhara ◽  
Eri Takeda ◽  
Hitomi Inoue ◽  
Ippei Kotera ◽  
Yoshihiro Yoneda
2006 ◽  
Vol 16 (2) ◽  
pp. 199-209 ◽  
Author(s):  
Jean Schneikert ◽  
Annette Grohmann ◽  
Jürgen Behrens

2010 ◽  
Vol 21 (4) ◽  
pp. 630-638 ◽  
Author(s):  
Yutaka Ogawa ◽  
Yoichi Miyamoto ◽  
Munehiro Asally ◽  
Masahiro Oka ◽  
Yoshinari Yasuda ◽  
...  

Npap60 (Nup50) is a nucleoporin that binds directly to importin α. In humans, there are two Npap60 isoforms: the long (Npap60L) and short (Npap60S) forms. In this study, we provide both in vitro and in vivo evidence that Npap60L and Npap60S function differently in nuclear protein import. In vitro binding assays revealed that Npap60S stabilizes the binding of importin α to classical NLS-cargo, whereas Npap60L promotes the release of NLS-cargo from importin α. In vivo time-lapse experiments showed that when the Npap60 protein level is controlled, allowing CAS to efficiently promote the dissociation of the Npap60/importin α complex, Npap60S and Npap60L suppress and accelerate the nuclear import of NLS-cargo, respectively. These results demonstrate that Npap60L and Npap60S have opposing functions and suggest that Npap60L and Npap60S levels must be carefully controlled for efficient nuclear import of classical NLS-cargo in humans. This study provides novel evidence that nucleoporin expression levels regulate nuclear import efficiency.


2021 ◽  
Author(s):  
Yuting Liu ◽  
Kehui Wang ◽  
Li Huang ◽  
Jicheng Zhao ◽  
Xinpeng Chen ◽  
...  

Centromere identity is defined by nucleosomes containing CENP-A, a histone H3 variant. The deposition of CENP-A at centromeres is tightly regulated in a cell-cycle-dependent manner. We previously reported that the spatiotemporal control of centromeric CENP-A incorporation is mediated by the phosphorylation of CENP-A Ser68. However, a recent report argued that Ser68 phosphoregulation is dispensable for accurate CENP-A loading. Here, we report that the substitution of Ser68 of endogenous CENP-A with either Gln68 or Glu68 severely impairs CENP-A deposition and cell viability. We also find that mice harboring the corresponding mutations are lethal. Together, these results indicate that the dynamic phosphorylation of Ser68 ensures cell-cycle-dependent CENP-A deposition and cell viability.


2019 ◽  
Vol 47 (16) ◽  
pp. 8439-8451 ◽  
Author(s):  
Alberto González-Medina ◽  
Elena Hidalgo ◽  
José Ayté

Abstract In fission yeast, MBF-dependent transcription is inactivated at the end of S phase through a negative feedback loop that involves the co-repressors, Yox1 and Nrm1. Although this repression system is well known, the molecular mechanisms involved in MBF activation remain largely unknown. Compacted chromatin constitutes a barrier to activators accessing promoters. Here, we show that chromatin regulation plays a key role in activating MBF-dependent transcription. Gcn5, a part of the SAGA complex, binds to MBF-regulated promoters through the MBF co-activator Rep2 in a cell cycle-dependent manner and in a reverse correlation to the binding of the MBF co-repressors, Nrm1 or Yox1. We propose that the co-repressors function as physical barriers to SAGA recruitment onto MBF promoters. We also show that Gcn5 acetylates specific lysine residues on histone H3 in a cell cycle-regulated manner. Furthermore, either in a gcn5 mutant or in a strain in which histone H3 is kept in an unacetylated form, MBF-dependent transcription is downregulated. In summary, Gcn5 is required for the full activation and correct timing of MBF-regulated gene transcription.


2015 ◽  
Vol 11 (6) ◽  
pp. e1004971 ◽  
Author(s):  
Pierre Génin ◽  
Frédérique Cuvelier ◽  
Sandrine Lambin ◽  
Josina Côrte-Real Filipe ◽  
Elodie Autrusseau ◽  
...  

2003 ◽  
Vol 8 (11) ◽  
pp. 889-896 ◽  
Author(s):  
Takayuki Hattori ◽  
Kyoko Kitagawa ◽  
Chiharu Uchida ◽  
Toshiaki Oda ◽  
Masatoshi Kitagawa

2003 ◽  
Vol 278 (30) ◽  
pp. 27421-27431 ◽  
Author(s):  
Christian Gaiddon ◽  
Maria Lokshin ◽  
Isabelle Gross ◽  
Danielle Levasseur ◽  
Yoichi Taya ◽  
...  

2003 ◽  
Vol 133 (1) ◽  
pp. 348-360 ◽  
Author(s):  
Frédéric Delmas ◽  
Johann Petit ◽  
Jérôme Joubès ◽  
Martial Séveno ◽  
Thomas Paccalet ◽  
...  

2019 ◽  
Author(s):  
David Sitbon ◽  
Ekaterina Boyarchuk ◽  
Geneviève Almouzni

AbstractThe closely related replicative H3 and non-replicative H3.3 variants show specific requirement during development in vertebrates. Whether it involves distinct mode of deposition or unique roles once incorporated into chromatin remains unclear. To disentangle the two aspects, we took advantage of the Xenopus early development combined with chromatin assays. Our previous work showed that in Xenopus, depletion of the non-replicative variant H3.3 impairs development at gastrulation, without compensation through provision of the replicative variant H3.2. We systematically mutated H3.3 at each four residues that differ from H3.2 and tested their ability to rescue developmental defects. Surprisingly, all H3.3 mutated variants functionally complemented endogenous H3.3, regardless of their incorporation pathways, except for one residue. This particular residue, the serine at position 31 in H3.3, gets phosphorylated onto chromatin in a cell cycle dependent manner. While the alanine substitution failed to rescue H3.3 depletion, a phosphomimic residue sufficed. We conclude that the time of gastrulation reveals a critical importance of the H3.3S31 residue independently of the variant incorporation pathway. We discuss how this single evolutionary conserved residue conveys a unique property for this variant in vertebrates during cell cycle and cell fate commitment.


1990 ◽  
Vol 110 (3) ◽  
pp. 547-557 ◽  
Author(s):  
D D Newmeyer ◽  
D J Forbes

We described previously an assay for authentic nuclear protein import in vitro. In this assay, exogenous nuclei are placed in an extract of Xenopus eggs; a rhodamine-labeled protein possessing a nuclear localization signal is added, and fluorescence microscopy is used to measure nuclear uptake. The requirement in this system for a cytosolic extract suggests that nuclear import is dependent on at least one cytosolic factor. We now confirm this hypothesis. Treatment of the cytosol with N-ethylmaleimide (NEM) abolishes nuclear protein import; readdition of a cytosolic fraction to the NEM-inactivated extract rescues transport. Thus, at least one NEM-sensitive factor required for transport is supplied by the cytosol. This activity, called nuclear import factor-1, or NIF-1, is ammonium-sulfate-precipitable, protease-sensitive, and heat-labile; it is therefore at least partly proteinaceous. NIF-1 stimulates, in a concentration-dependent manner, the rate at which individual nuclei accumulate protein. The effect of NIF-1 is enhanced by a second cytosolic NEM-sensitive factor, NIF-2. Earlier we identified two steps in the nuclear import reaction: (a) ATP-independent binding of a signal-sequence-bearing protein to the nuclear pore; and (b) ATP-dependent translocation of that protein through the pore. We now show that NEM inhibits signal-mediated binding, and that readdition of NIF-1 restores binding. Thus, NIF-1 is required for at least the binding step and does not require ATP for its activity. NIF-1 may act as a cytoplasmic signal receptor that escorts signal-bearing proteins to the pore, or may instead promote signal-mediated binding to the pore in another manner, as discussed.


Sign in / Sign up

Export Citation Format

Share Document