Research of smooth muscle cells response to fluid flow shear stress by hyaluronic acid micro-pattern on a titanium surface

2013 ◽  
Vol 319 (17) ◽  
pp. 2663-2672 ◽  
Author(s):  
Jingan Li ◽  
Kun Zhang ◽  
Ping Yang ◽  
Yuzhen Liao ◽  
Liangliang Wu ◽  
...  
Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3128
Author(s):  
Thomas R. Coughlin ◽  
Ali Sana ◽  
Kevin Voss ◽  
Abhilash Gadi ◽  
Upal Basu-Roy ◽  
...  

Osteosarcoma (OS) is an aggressive bone cancer originating in the mesenchymal lineage. Prognosis for metastatic disease is poor, with a mortality rate of approximately 40%; OS is an aggressive disease for which new treatments are needed. All bone cells are sensitive to their mechanical/physical surroundings and changes in these surroundings can affect their behavior. However, it is not well understood how OS cells specifically respond to fluid movement, or substrate stiffness—two stimuli of relevance in the tumor microenvironment. We used cells from spontaneous OS tumors in a mouse engineered to have a bone-specific knockout of pRb-1 and p53 in the osteoblast lineage. We silenced Sox2 (which regulates YAP) and tested the effect of fluid flow shear stress (FFSS) and substrate stiffness on YAP expression/activity—which was significantly reduced by loss of Sox2, but that effect was reversed by FFSS but not by substrate stiffness. Osteogenic gene expression was also reduced in the absence of Sox2 but again this was reversed by FFSS and remained largely unaffected by substrate stiffness. Thus we described the effect of two distinct stimuli on the mechanosensory and osteogenic profiles of OS cells. Taken together, these data suggest that modulation of fluid movement through, or stiffness levels within, OS tumors could represent a novel consideration in the development of new treatments to prevent their progression.


Author(s):  
Devon Scott ◽  
Aaron Richman ◽  
Craig Lanning ◽  
Robin Shandas ◽  
Wei Tan

We have developed a microfluidic shear device that allows for the study of cell communication in a dynamically controlled biochemical and biomechanical environments simulating cells’ living environments in vivo. Such study may help to improve our understanding in the effects of hypertension-relevant and vascular development-relevant flow shear stress on cell behaviors. Endothelial cells may be a key factor for transmitting the blood flow conditions from the endothelial lining to interstitial layers and smooth muscle cells. The interstitial flow stress and the shear stress induced signaling factors may greatly alter vascular biology of these deep layers. Endothelial cells act as a mechano-transducer by converting shear stress into biochemical signaling factors. The biochemical factors diffuse to smooth muscle cells and further alter the biological structure of vascular tissues. Also, the flow shear stress will be transmitted to the interstitial tissue layer through the pores resulted from the pores in the fenestrated endothelial lining. Studies in both the mechano-transduction process and the mechano-transmission process will benefit from a biomimetic flow shear device with co-cultured cells. Our device will allow the co-culture of endothelial cells and smooth muscle cells to study these biomechanical processes. The pulmonary arterial cells are used as a model in the study. The microfluidic device developed here will be used to enhance the understanding of pulmonary vascular disease pathogenesis due to the variations in the flow shear stress.


2020 ◽  
Vol 319 (2) ◽  
pp. F312-F322
Author(s):  
Tarak Srivastava ◽  
Trupti Joshi ◽  
Yuexu Jiang ◽  
Daniel P. Heruth ◽  
Mohamed H. Rezaiekhaligh ◽  
...  

The ultrafiltrate flow over the major processes and cell body generates fluid flow shear stress (FFSS) on podocytes. Hyperfiltration-associated increase in FFSS can lead to podocyte injury and detachment. Previously, we showed that FFSS-induced upregulation of the cyclooxygenase 2 (COX2)-PGE2-prostaglandin E receptor 2 (EP2) axis in podocytes activates Akt-glycogen synthase kinase-3β-β-catenin and MAPK/ERK signaling in response to FFSS. Integrative MultiOmics Pathway Resolution (IMPRes) is a new bioinformatic tool that enables simultaneous time-series analysis of more than two groups to identify pathways and molecular connections. In the present study, we used previously characterized COX2 [prostaglandin-endoperoxide synthase 2 ( Ptgs2)], EP2 ( Ptger2), and β1-catenin ( Ctnnb1) as “seed genes” from an array data set of four groups analyzed over a time course. The 3 seed genes shared 7 pathways and 50 genes of 14 pathways and 89 genes identified by IMPRes. A composite of signaling pathways highlighted the temporal molecular connections during mechanotransduction signaling in FFSS-treated podocytes. We investigated the “proteoglycans in cancer” and “galactose metabolism” pathways predicted by IMPRes. A custom-designed PCR array validated 60.7% of the genes predicted by IMPRes analysis, including genes for the above-named pathways. Further validation using Western blot analysis showed increased expression of phosho-Erbb2, phospho-mammalian target of rapamycin (mTOR), CD44, and hexokinase II (Hk2); decreased total Erbb2, galactose mutarotase (Galm), and β-1,4-galactosyltransferase 1 (B4galt1); and unchanged total mTOR and AKT3. These findings corroborate our previously reported results. This study demonstrates the potential of the IMPRes method to identify novel pathways. Identifying the “proteoglycans in cancer” and “galactose metabolism” pathways has generated a lead to study the significance of FFSS-induced glycocalyx remodeling and possible detachment of podocytes from the glomerular matrix.


2018 ◽  
Vol 314 (1) ◽  
pp. F22-F34 ◽  
Author(s):  
Tarak Srivastava ◽  
Hongying Dai ◽  
Daniel P. Heruth ◽  
Uri S. Alon ◽  
Robert E. Garola ◽  
...  

Recently, we and others have found that hyperfiltration-associated increase in biomechanical forces, namely, tensile stress and fluid flow shear stress (FFSS), can directly and distinctly alter podocyte structure and function. The ultrafiltrate flow over the major processes and cell body generates FFSS to podocytes. Our previous work suggests that the cyclooxygenase-2 (COX-2)-PGE2-PGE2 receptor 2 (EP2) axis plays an important role in mechanoperception of FFSS in podocytes. To address mechanotransduction of the perceived stimulus through EP2, cultured podocytes were exposed to FFSS (2 dyn/cm2) for 2 h. Total RNA from cells at the end of FFSS treatment, 2-h post-FFSS, and 24-h post-FFSS was used for whole exon array analysis. Differentially regulated genes ( P < 0.01) were analyzed using bioinformatics tools Enrichr and Ingenuity Pathway Analysis to predict pathways/molecules. Candidate pathways were validated using Western blot analysis and then further confirmed to be resulting from a direct effect of PGE2 on podocytes. Results show that FFSS-induced mechanotransduction as well as exogenous PGE2 activate the Akt-GSK3β-β-catenin (Ser552) and MAPK/ERK but not the cAMP-PKA signal transduction cascades. These pathways are reportedly associated with FFSS-induced and EP2-mediated signaling in other epithelial cells as well. The current regimen for treating hyperfiltration-mediated injury largely depends on targeting the renin-angiotensin-aldosterone system. The present study identifies specific transduction mechanisms and provides novel information on the direct effect of FFSS on podocytes. These results suggest that targeting EP2-mediated signaling pathways holds therapeutic significance for delaying progression of chronic kidney disease secondary to hyperfiltration.


2013 ◽  
Vol 29 (1) ◽  
pp. 65-72 ◽  
Author(s):  
Tarak Srivastava ◽  
Gianni E. Celsi ◽  
Mukut Sharma ◽  
Hongying Dai ◽  
Ellen T. McCarthy ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1253
Author(s):  
Tarak Srivastava ◽  
Daniel P. Heruth ◽  
R. Scott Duncan ◽  
Mohammad H. Rezaiekhaligh ◽  
Robert E. Garola ◽  
...  

Increased fluid flow shear stress (FFSS) in solitary kidney alters podocyte function in vivo. FFSS-treated cultured podocytes show upregulated AKT-GSK3β-β-catenin signaling. The present study was undertaken to confirm (i) the activation of β-catenin signaling in podocytes in vivo using unilaterally nephrectomized (UNX) TOPGAL mice with the β-galactosidase reporter gene for β-catenin activation, (ii) β-catenin translocation in FFSS-treated mouse podocytes, and (iii) β-catenin signaling using publicly available data from UNX mice. The UNX of TOPGAL mice resulted in glomerular hypertrophy and increased the mesangial matrix consistent with hemodynamic adaptation. Uninephrectomized TOPGAL mice showed an increased β-galactosidase expression at 4 weeks but not at 12 weeks, as assessed using immunofluorescence microscopy (p < 0.001 at 4 weeks; p = 0.16 at 12 weeks) and X-gal staining (p = 0.008 at 4 weeks; p = 0.65 at 12 weeks). Immunofluorescence microscopy showed a significant increase in phospho-β-catenin (Ser552, p = 0.005) at 4 weeks but not at 12 weeks (p = 0.935) following UNX, and the levels of phospho-β-catenin (Ser675) did not change. In vitro FFSS caused a sustained increase in the nuclear translocation of phospho-β-catenin (Ser552) but not phospho-β-catenin (Ser675) in podocytes. The bioinformatic analysis of the GEO dataset, #GSE53996, also identified β-catenin as a key upstream regulator. We conclude that transcription factor β-catenin mediates FFSS-induced podocyte (glomerular) injury in solitary kidney.


Sign in / Sign up

Export Citation Format

Share Document