Long non-coding RNA muskelin 1 antisense RNA (MKLN1-AS) is a potential diagnostic and prognostic biomarker and therapeutic target for hepatocellular carcinoma

Author(s):  
Chao Guo ◽  
Shuhuang Zhou ◽  
Weimin Yi ◽  
Pingzhou Yang ◽  
Ou Li ◽  
...  
2018 ◽  
Vol 38 (5) ◽  
Author(s):  
Fan Fei ◽  
Yongsheng He ◽  
Sen He ◽  
Zhongze He ◽  
Youyu Wang ◽  
...  

As a newly discovered long non-coding RNA, small nucleolar RNA host gene 3 (SHNG3) has been reported to be dysregulated in certain cancers. Nevertheless, the details about clinical values and biological effects of SNHG3 on glioma are still covered. In this paper, we determined the expression level of SNHG3 in glioma tissues and cells and evaluated the effect of SNHG3 expression on the prognosis of glioma patients. The functional assays were applied to define the effects of SNHG3 on the biological behaviors in glioma including cell proliferation, cell cycle, and apoptosis. It was revealed that SNHG3 was much more enriched in glioma tissues and cell lines than in normal ones. Furthermore, gain- or loss-of-function experiments indicated that the up-regulation of SNHG3 promoted cell proliferation, accelerate cell cycle progress, and repressed cell apoptosis. The mechanistic assays disclosed that SNHG3 facilitated the malignant progression of glioma through epigenetically repressing KLF2 and p21 via recruiting enhancer of zeste homolog 2 to the promoter of KLF2 and p21. Generally, it was exposed that SNHG3 might function as an oncogene in glioma and could be explored as a potential prognostic biomarker and therapeutic target for glioma.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Qian Lu ◽  
Jun Lou ◽  
Ruyun Cai ◽  
Weidong Han ◽  
Hongming Pan

AbstractLong non-coding RNAs refer to transcripts over 200 nt in length that lack the ability to encode proteins, which occupy the majority of the genome and play a crucial role in the occurrence and development of human diseases, especially cancers. SBF2-AS1, a newly identified long non-coding RNA, has been verified to be highly expressed in diversiform cancers, and is involved in processes promoting tumorigenesis, tumor progression and tumor metastasis. Moreover, upregulation of SBF2-AS1 expression was significantly related to disadvantageous clinicopathologic characteristics and indicated poor prognosis. In this review, we comprehensively summarize the up-to-date knowledge of the detailed mechanisms and underlying functions of SBF2-AS1 in diverse cancer types, highlighting the potential of SBF2-AS1 as a diagnostic and prognostic biomarker and even a therapeutic target.


Bioengineered ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 578-588
Author(s):  
Xinghao Zhu ◽  
Shiqing Jiang ◽  
Zongyao Wu ◽  
Tonghua Liu ◽  
Wei Zhang ◽  
...  

2020 ◽  
Vol 26 ◽  
Author(s):  
Bei Wang ◽  
Wen Xu ◽  
Yuxuan Cai ◽  
Chong Guo ◽  
Gang Zhou ◽  
...  

Background: CASC15, one of long non-coding RNA, is involved in the regulation of many tumor biological processes, and is expected to become a new biological therapeutic target. This paper aims to elucidate the pathophysiological function of CASC15 in various tumors. Methods: The relationship between CASC15 and tumors was analyzed by searching references, and summarizes the specific pathophysiological mechanism of CASC15. Results: LncRNA CASC15 is closely related to tumor development, and has been shown to be abnormally high expressed in all kinds of tumors, including breast cancer, cervical cancer, lung cancer, hepatocellular carcinoma, gastric cancer, bladder cancer, colon cancer, colorectal cancer, cardiac hypertrophy, intrahepatic cholangiocarcinoma, leukemia, melanoma, tongue squamous cell carcinoma, nasopharyngeal carcinoma. However, CASC15 has been found to be downexpressed abnormally in ovarian cancer, glioma and neuroblastoma. Besides, it is identified that CASC15 can affect the proliferation, invasion and apoptosis of tumors. Conclusion: LncRNA CASC15 has the potential to become a new therapeutic target or marker for a variety of tumors.


Author(s):  
Xiuming Liu ◽  
Xiaofeng Li ◽  
Jianchang Li

AbstractRetinoblastoma is the most common malignancy in children's eyes with high incidence. Long non-coding RNAs (lncRNAs) play important roles in the progression of retinoblastoma. LncRNA FEZF1 antisense RNA 1 (FEZF1-AS1) has been found to stimulate retinoblastoma. However, the mechanism of FEZF1-AS1 underlying progression of retinoblastoma is still unclear. In current study, FEZF1-AS1 was up-regulated in retinoblastoma tissues and cells. FEZF1-AS1 overexpression enhanced retinoblastoma cell viability, promoted cell cycle, and inhibited apoptosis. Conversely, FEZF1-AS1 knockdown reduced cell viability, cycle, and elevated apoptosis. The interaction between FEZF1-AS1 and microRNA-363-3p (miR-363-3p) was confirmed. FEZF1-AS1 down-regulated miR-363-3p and up-regulated PAX6. PAX6 was a target gene of miR-363-3p. EZF1-AS1 promoted retinoblastoma cell viability and suppressed apoptosis via PAX6. Further, we demonstrated that FEZF1-AS1 contribute to tumor formation in vivo. In conclusion, FEZF1-AS1 elevated growth and inhibited apoptosis by regulating miR-363-3p/PAX6 in retinoblastoma, which provide a new target for retinoblastoma treatment.


Bioengineered ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 673-681
Author(s):  
Jie Cao ◽  
Lili Wu ◽  
Xin Lei ◽  
Keqing Shi ◽  
Liang Shi ◽  
...  

Author(s):  
Almaz Zaki ◽  
M Shadab Ali ◽  
Vijay Hadda ◽  
Syed Mansoor Ali ◽  
Anita Chopra ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document