The control of oxytocin (OT) secretion induced by osmotic stimulus: Study of participation of the median preoptic nucleus (MnPO) and modulation by ovarian steroids

2006 ◽  
Vol 27 (1) ◽  
pp. 123-124
Author(s):  
W. de Lucca ◽  
C.R. Franci
1997 ◽  
Vol 272 (1) ◽  
pp. R275-R288 ◽  
Author(s):  
J. Y. Summy-Long ◽  
S. Gestl ◽  
M. L. Terrell ◽  
G. Wolz ◽  
M. Kadekaro

Glucose utilization and Fos expression were used to compare responses of cerebral structures involved in osmoregulation in virgin and lactating rats given 0.15, 0.85, or 1.5 M NaCl subcutaneously. In virgin animals, glucose utilization increased (P < 0.05) in the supraoptic nuclei (SON), paraventricular nuclei (PVN), and neural lobe (NL) proportionally to the osmotic stimulus (0.15 M NaCl < 0.85 M NaCl < 1.5 M NaCl), whereas metabolism in the median preoptic nucleus (MPO) and median eminence (ME) increased only after 1.5 M NaCl. In lactating rats, enhanced utilization of glucose in response to osmotic stimulation was absent in the PVN (0.85 M NaCl), MPO, and ME or significantly (P < 0.01) reduced (SON, PVN, NL) compared with virgin animals. Glucose utilization in each structure correlated linearly with plasma osmolality but with a lower slope (P < 0.05) in lactating animals. Magnocellular neurons expressing Fos in the SON increased linearly with plasma osmolality and were more numerous (P < 0.05) in control lactating animals but increased less (P < 0.05) than in virgin rats after 0.85 M NaCl. The attenuated magnocellular response during lactation results from reduced afferent activation from osmosensitive forebrain sites.


2011 ◽  
Vol 105 (2) ◽  
pp. 650-660 ◽  
Author(s):  
Christina Tremblay ◽  
Emmanuelle Berret ◽  
Mélaine Henry ◽  
Benjamin Nehmé ◽  
Louis Nadeau ◽  
...  

Sodium (Na+) ions are of primary importance for hydromineral and cardiovascular homeostasis, and the level of Na+ in the body fluid compartments [plasma and cerebrospinal fluid (CSF)] is precisely monitored in the hypothalamus. Glial cells seem to play a critical role in the mechanism of Na+ detection. However, the precise role of neurons in the detection of extracellular Na+ concentration ([Na+]out) remains unclear. Here we demonstrate that neurons of the median preoptic nucleus (MnPO), a structure in close contact with the CSF, are specific Na+ sensors. Electrophysiological recordings were performed on dissociated rat MnPO neurons under isotonic [Na+] (100 mM NaCl) with local application of hypernatriuric (150, 180 mM NaCl) or hyponatriuric (50 mM NaCl) external solution. The hyper- and hyponatriuric conditions triggered an in- and an outward current, respectively. The reversal potential of the current matched the equilibrium potential of Na+, indicating that a change in [Na+]out modified the influx of Na+ in the MnPO neurons. The conductance of the Na+ current was not affected by either the membrane potential or the [Na+]out. Moreover, the channel was highly selective for lithium over guanidinium. Together, these data identified the channel as a Na+ leak channel. A high correlation between the electrophysiological recordings and immunofluorescent labeling for the NaX channel in dissociated MnPO neurons strongly supports this channel as a candidate for the Na+ leak channel responsible for the Na+-sensing ability of rat MnPO neurons. The absence of NaX labeling and of a specific current evoked by a change in [Na+]out in mouse MnPO neurons suggests species specificity in the hypothalamus structures participating in central Na+ detection.


2001 ◽  
Vol 280 (6) ◽  
pp. R1837-R1843 ◽  
Author(s):  
Zhice Xu ◽  
Calvario Glenda ◽  
Linda Day ◽  
Jiaming Yao ◽  
Michael G. Ross

The present study examined physiological and cellular responses to central application of ANG II in ovine fetuses and determined the fetal central ANG-mediated dipsogenic sites in utero. Chronically prepared near-term ovine fetuses (130 ± 2 days) received injection of ANG II (1.5 μg/kg icv). Fetuses were monitored for 3.5 h for swallowing activity, after which animals were killed and fetal brains were perfused for subsequent Fos staining. Intracerebroventricular ANG II significantly increased fetal swallowing in near-term ovine fetuses (1.1 ± 0.2 to 4.5 ± 1.0 swallows/min). The initiation of stimulated fetal swallowing activity was similar to the latency of thirst responses (drinking behavior) elicited by central ANG II in adult animals. ANG II evoked increased Fos staining in putative dipsogenic centers, including the subfornical organ, organum vasculosum of the lamina terminalis, and median preoptic nucleus. Intracerebroventricular injection of ANG II also caused c- fos expression in the fetal hindbrain. These results indicate that an ANG II-mediated central dipsogenic mechanism is intact before birth, acting at sites consistent with the dipsogenic neural network. Central ANG II mechanisms likely contribute to fetal body fluid and amniotic fluid regulation.


1987 ◽  
Vol 253 (6) ◽  
pp. R827-R831 ◽  
Author(s):  
M. L. Mangiapane ◽  
M. J. Brody

Previous studies have shown that electrical stimulation of the rat anteroventral third ventricle (AV3V) region produces a characteristic pattern of hemodynamic effects, i.e., renal and mesenteric vasoconstriction, and hindquarters vasodilation. In the present study, we localized the vasoconstrictor and vasodilator effects to specific subregions of the AV3V. In urethan-anesthetized rats prepared with arterial catheters and pulsed Doppler flow probes, we assessed the effects of electrical stimulation of four nuclei within AV3V on mean arterial pressure and renal, mesenteric, and hindquarters resistance. These nuclei were the organum vasculosum lamina terminalis (OVLT), ventral nucleus medianus (median preoptic nucleus), anterior (precommissural) nucleus medianus (median preoptic nucleus), and periventricular preoptic nuclei. Stimulation was carried out by use of a tungsten microelectrode. Stimulation of the OVLT consistently provoked stimulus-locked increases in arterial pressure coupled with increases in mesenteric and renal vascular resistance. Ganglionic blockade with chlorisondamine prevented these responses, demonstrating that they were mediated neurogenically. Stimulation of the three remaining nuclei produced decreases in arterial pressure, hindquarters vasodilation, and little change in mesenteric and renal vascular resistance. No changes in heart rate were observed with stimulation of any of the four nuclei. These results suggest that the vasoconstrictor and pressor functions of the AV3V region are localized in or near the OVLT region, whereas the remaining nuclei of the AV3V region mediate vasodilator and depressor responses.


2000 ◽  
Vol 279 (6) ◽  
pp. R2079-R2088 ◽  
Author(s):  
Hui Gong ◽  
Ronald Szymusiak ◽  
Janice King ◽  
Teresa Steininger ◽  
Dennis McGinty

Preoptic area (POA) neuronal activity promotes sleep, but the localization of critical sleep-active neurons is not completely known. Thermal stimulation of the POA also facilitates sleep. This study used the c-Fos protein immunostaining method to localize POA sleep-active neurons at control (22°C) and mildly elevated (31.5°C) ambient temperatures. At 22°C, after sleep, but not after waking, we found increased numbers of c-Fos immunoreactive neurons (IRNs) in both rostral and caudal parts of the median preoptic nucleus (MnPN) and in the ventrolateral preoptic area (VLPO). In animals sleeping at 31.5°C, significantly more Fos IRNs were found in the rostral MnPN compared with animals sleeping at 22°C. In VLPO, Fos IRN counts were no longer increased over waking levels after sleep at the elevated ambient temperature. Sleep-associated Fos IRNs were also found diffusely in the POA, but counts were lower than those made after waking. This study supports a hypothesis that the MnPN, as well as the VLPO, is part of the POA sleep-facilitating system and that the rostral MnPN may facilitate sleep, particularly at elevated ambient temperatures.


1986 ◽  
Vol 251 (1) ◽  
pp. H148-H152
Author(s):  
G. D. Fink ◽  
C. A. Bruner ◽  
M. L. Mangiapane

Previous studies implicated the ventral median preoptic nucleus (MNPOv) in cardiovascular responses to circulating and intracerebroventricular angiotensin II (ANG II) and in normal cardiovascular and fluid homoeostasis. In the present experiments, chronically catheterized rats received continuous (24 h/day) intravenous infusions of ANG II (10 ng/min) for 5 days, and changes in mean arterial pressure, heart rate, water intake and urinary electrolyte and water excretion were determined daily. Three groups of rats were compared as follows: 1) sham-operated control rats (n = 12), 2) rats with 20-70% of the MNPOv ablated electrolytically (n = 6), and 3) rats with over 90% of the MNPOv ablated (n = 5). The organum vasculosum of the lamina terminalis was intact in all three groups. Base-line values of all measured variables were identical in the three groups on two control days preceding ANG II infusion and on two recovery days after infusion. During the administration of ANG II for 5 days, mean arterial pressure rose significantly (and similarly) in all three groups of rats; no other variable was significantly affected by ANG II infusion. These results suggest that neural pathways originating in, or passing through, the MNPOv region are not critical in the pathogenesis of ANG II-induced hypertension in the rat.


1992 ◽  
Vol 262 (2) ◽  
pp. R204-R210
Author(s):  
J. R. Blair-West ◽  
D. A. Denton ◽  
M. J. McKinley ◽  
R. S. Weisinger

Cows that were normally hydrated or deprived of water were given intravenous or intracerebroventricular (icv) infusions of angiotensin I converting-enzyme inhibitors (CEI) or angiotensin II antagonists. Normally hydrated Na-deficient cows increased water intake in a dose-related manner in response to icv infusion of angiotensin I (n = 5). The response to 3 micrograms/h angiotensin I was abolished by concurrent icv infusion of the CEI captopril at 3 mg/h but not by intravenous infusion of captopril at 120 mg/h, which reduced Na appetite (n = 5). The icv infusion of captopril at 12 mg/h did not reduce the water intake of cows that were water restricted for 26.5 h (n = 4) or water restricted and Na deficient (n = 4). The icv infusion of the more lipophilic CEI ramipril at 3 mg/h (n = 7) did not reduce the water intake of normally hydrated or dehydrated cows but reduced the "need-free" intake of Na solution by dehydrated cows. The icv infusion of the nonpeptide antagonist Du Pont 753 at 3 mg/h (n = 7) reduced water intake in dehydrated cows. The results indicate that brain angiotensin may be involved in thirst in cattle. The data suggest that this brain angiotensin II may be formed by a pathway that does not include converting enzyme and that is sited inside the blood brain barrier, possibly in the median preoptic nucleus.


Sign in / Sign up

Export Citation Format

Share Document