scholarly journals Autotaxin inhibition reduces cardiac inflammation and mitigates adverse cardiac remodeling after myocardial infarction

2020 ◽  
Vol 149 ◽  
pp. 95-114
Author(s):  
Himi Tripathi ◽  
Ahmed Al-Darraji ◽  
Mohamed Abo-Aly ◽  
Hsuan Peng ◽  
Elica Shokri ◽  
...  
2021 ◽  
Vol 22 (11) ◽  
pp. 5480
Author(s):  
David Schumacher ◽  
Adelina Curaj ◽  
Sakine Simsekyilmaz ◽  
Andreas Schober ◽  
Elisa A. Liehn ◽  
...  

Myocardial infarction remains the most common cause of heart failure with adverse remodeling. MicroRNA (miR)155 is upregulated following myocardial infarction and represents a relevant regulatory factor for cardiac remodeling by engagement in cardiac inflammation, fibrosis and cardiomyocyte hypertrophy. Here, we investigated the role of miR155 in cardiac remodeling and dysfunction following myocardial infarction in a dyslipidemic mouse model. Myocardial infarction was induced in dyslipidemic apolipoprotein E-deficient (ApoE−/−) mice with and without additional miR155 knockout by ligation of the LAD. Four weeks later, echocardiography was performed to assess left ventricular (LV) dimensions and function, and mice were subsequently sacrificed for histological analysis. Echocardiography revealed no difference in LV ejection fractions, LV mass and LV volumes between ApoE−/− and ApoE−/−/miR155−/− mice. Histology confirmed comparable infarction size and unaltered neoangiogenesis in the myocardial scar. Notably, myofibroblast density was significantly decreased in ApoE−/−/miR155−/− mice compared to the control, but no difference was observed for total collagen deposition. Our findings reveal that genetic depletion of miR155 in a dyslipidemic mouse model of myocardial infarction does not reduce infarction size and consecutive heart failure but does decrease myofibroblast density in the post-ischemic scar.


2016 ◽  
Vol 310 (2) ◽  
pp. H250-H261 ◽  
Author(s):  
Fuyang Zhang ◽  
Yunlong Xia ◽  
Wenjuan Yan ◽  
Haoqiang Zhang ◽  
Fen Zhou ◽  
...  

Sphingosine 1-phosphate (S1P) mediates multiple pathophysiological effects in the cardiovascular system. However, the role of S1P signaling in pathological cardiac remodeling following myocardial infarction (MI) remains controversial. In this study, we found that cardiac S1P greatly increased post-MI, accompanied with a significant upregulation of cardiac sphingosine kinase-1 (SphK1) and S1P receptor 1 (S1PR1) expression. In MI-operated mice, inhibition of S1P production by using PF543 (the SphK1 inhibitor) ameliorated cardiac remodeling and dysfunction. Conversely, interruption of S1P degradation by inhibiting S1P lyase augmented cardiac S1P accumulation and exacerbated cardiac remodeling and dysfunction. In the cardiomyocyte, S1P directly activated proinflammatory responses via a S1PR1-dependent manner. Furthermore, activation of SphK1/S1P/S1PR1 signaling attributed to β1-adrenergic receptor stimulation-induced proinflammatory responses in the cardiomyocyte. Administration of FTY720, a functional S1PR1 antagonist, obviously blocked cardiac SphK1/S1P/S1PR1 signaling, ameliorated chronic cardiac inflammation, and then improved cardiac remodeling and dysfunction in vivo post-MI. In conclusion, our results demonstrate that cardiac SphK1/S1P/S1PR1 signaling plays an important role in the regulation of proinflammatory responses in the cardiomyocyte and targeting cardiac S1P signaling is a novel therapeutic strategy to improve post-MI cardiac remodeling and dysfunction.


2018 ◽  
Vol 33 (2) ◽  
pp. 70-76 ◽  
Author(s):  
A. E. Gombozhapova ◽  
Yu. V. Rogovskaya ◽  
M. S. Rebenkova ◽  
J. G. Kzhyshkowska ◽  
V. V. Ryabov

Purpose. Myocardial regeneration is one of the most ambitious goals in prevention of adverse cardiac remodeling. Macrophages play a key role in transition from inflammatory to regenerative phase during wound healing following myocardial infarction (MI). We have accumulated data on macrophage properties ex vivo and in cell culture. However, there is no clear information about phenotypic heterogeneity of cardiac macrophages in patients with MI. The purpose of the project was to assess cardiac macrophage infiltration during wound healing following myocardial infarction in clinical settings taking into consideration experimental knowledge.Material and Methods. The study included 41 patients with fatal MI type 1. In addition to routine analysis, macrophages infiltration was assessed by immunohistochemistry. We used CD68 as a marker for the cells of the macrophage lineage, while CD163, CD206, and stabilin-1 were considered as M2 macrophage biomarkers. Nine patients who died from noncardiovascular causes comprised the control group.Results. The intensity of cardiac macrophage infiltration was higher during the regenerative phase than during the inflammatory phase. Results of immunohistochemical analysis demonstrated the presence of phenotypic heterogeneity of cardiac macrophages in patients with MI. We noticed that numbers of CD68+, CD163+, CD206+, and stabilin-1+ macrophages depended on MI phase.Conclusion. Our study supports prospects for implementation of macrophage phenotyping in clinic practice. Improved understanding of phenotypic heterogeneity might become the basis of a method to predict adverse cardiac remodeling and the first step in developing myocardial regeneration target therapy.


Open Medicine ◽  
2020 ◽  
Vol 15 (1) ◽  
pp. 545-555
Author(s):  
Hamad Al Shahi ◽  
Tomoyasu Kadoguchi ◽  
Kazunori Shimada ◽  
Kosuke Fukao ◽  
Satoshi Matsushita ◽  
...  

AbstractWe investigated the effects of voluntary exercise after myocardial infarction (MI) on cardiac function, remodeling, and inflammation. Male C57BL/6J mice were divided into the following four groups: sedentary + sham (Sed-Sh), sedentary + MI (Sed-MI), exercise + sham (Ex-Sh), and exercise + MI (Ex-MI). MI induction was performed by ligation of the left coronary artery. Exercise consisting of voluntary wheel running started after the operation and continued for 4 weeks. The Ex-MI mice had significantly increased cardiac function compared with the Sed-MI mice. The Ex-MI mice showed significantly reduced expression levels of tumor necrosis factor-α, interleukin (IL)-1β, IL-6, and IL-10 in the infarcted area of the left ventricle compared with the Sed-MI mice. In the Ex-MI mice, the expression levels of fibrosis-related genes including collagen I and III were decreased compared to the Sed-MI mice, and the expression levels of IL-1β, IL-6, follistatin-like 1, fibroblast growth factor 21, and mitochondrial function-related genes were significantly elevated in skeletal muscle compared with the Sed mice. The plasma levels of IL-6 were also significantly elevated in the Ex-MI group compared with the Sed-MI groups. These findings suggest that voluntary exercise after MI may improve in cardiac remodeling associated with anti-inflammatory effects in the myocardium and myokine production in the skeletal muscles.


2021 ◽  
Vol 22 (11) ◽  
pp. 5718
Author(s):  
Michal Kowara ◽  
Sonia Borodzicz-Jazdzyk ◽  
Karolina Rybak ◽  
Maciej Kubik ◽  
Agnieszka Cudnoch-Jedrzejewska

Myocardial infarction is one of the major causes of mortality worldwide and is a main cause of heart failure. This disease appears as a final point of atherosclerotic plaque progression, destabilization, and rupture. As a consequence of cardiomyocytes death during the infarction, the heart undergoes unfavorable cardiac remodeling, which results in its failure. Therefore, therapies aimed to limit the processes of atherosclerotic plaque progression, cardiac damage during the infarction, and subsequent remodeling are urgently warranted. A hopeful therapeutic option for the future medicine is targeting and regulating non-coding RNA (ncRNA), like microRNA, circular RNA (circRNA), or long non-coding RNA (lncRNA). In this review, the approaches targeted at ncRNAs participating in the aforementioned pathophysiological processes involved in myocardial infarction and their outcomes in preclinical studies have been concisely presented.


2015 ◽  
Vol 309 (3) ◽  
pp. H471-H480 ◽  
Author(s):  
Daichi Enomoto ◽  
Masanori Obana ◽  
Akimitsu Miyawaki ◽  
Makiko Maeda ◽  
Hiroyuki Nakayama ◽  
...  

STAT3 is a cardioprotective molecule against acute myocardial injury; however, recent studies have suggested that chronic STAT3 activation in genetically modified mice was detrimental after myocardial infarction (MI). In the present study, we assessed the biological significance of STAT3 activity in subacute MI using tamoxifen (TM)-inducible cardiac-specific STAT3 knockout (STAT3 iCKO) mice. After coronary ligation, STAT3 was rapidly activated in hearts, and its activation was sustained to the subacute phase. To make clear the pathophysiological roles of STAT3 activation specifically in subacute MI, MI was generated in STAT3 iCKO mice followed by TM treatment for 14 consecutive days beginning from day 11 after MI, which ablated the STAT3 gene in the subacute phase. Intriguingly, mortality was increased by TM treatment in STAT3 iCKO mice, accompanied by an increased heart weight-to-body weight ratio. Masson's trichrome staining demonstrated that cardiac fibrosis was dramatically exacerbated in STAT3 iCKO mice 24 days after MI (fibrotic circumference: 58.3 ± 6.7% in iCKO mice and 40.8 ± 9.3% in control mice), concomitant with increased expressions of fibrosis-related gene transcripts, including matrix metalloproteinase 9, procollagen 1, and procollagen 3. Echocardiography clarified that cardiac function was deteriorated in STAT3 iCKO mice (fractional shortening: 20.6 ± 4.1% in iCKO mice and 29.1 ± 6.0% in control mice). Dihydroethidium fluorescence analysis revealed that superoxide production was increased in STAT3 iCKO mice. Moreover, immunohistochemical analyses revealed that capillary density was decreased in STAT3 iCKO mice. Finally, STAT3 deletion in subacute MI evoked severe cardiac hypertrophy in the border zone. In conclusion, the intrinsic activity of STAT3 in the myocardium confers the resistance to cardiac remodeling in subacute MI.


Sign in / Sign up

Export Citation Format

Share Document