scholarly journals A bimodular PKS platform that expands the biological design space

2020 ◽  
Vol 61 ◽  
pp. 389-396
Author(s):  
Amin Zargar ◽  
Luis Valencia ◽  
Jessica Wang ◽  
Ravi Lal ◽  
Samantha Chang ◽  
...  
Author(s):  
Miguel Á. Valderrama-Gómez ◽  
Jason G. Lomnitz ◽  
Rick A. Fasani ◽  
Michael A. Savageau

SummaryMechanistic models of biochemical systems provide a rigorous kinetics-based description of various biological phenomena. They are indispensable to elucidate biological design principles and to devise and engineer systems with novel functionalities. To date, mathematical analysis and characterization of these models remain a challenging endeavor, the main difficulty being the lack of information for most system parameters. Here, we introduce the Design Space Toolbox v.3.0 (DST3), a software implementation of the Design Space formalism that enables mechanistic modeling of complex biological processes without requiring previous knowledge of the parameter values involved. This is achieved by making use of a phenotype-centric modeling approach, in which the system is first decomposed into a series of biochemical phenotypes. Parameter values realizing phenotypes of interest are predicted in a second step. DST3 represents the most generally applicable implementation of the Design Space formalism to date and offers unique advantages over earlier versions. By expanding the capabilities of the Design Space formalism and streamlining its distribution, DST3 represents a valuable tool for elucidating biological design principles and guiding the design and optimization of novel synthetic circuits.


2020 ◽  
Author(s):  
Amin Zargar ◽  
Luis Valencia ◽  
Jessica Wang ◽  
Ravi Lal ◽  
Samantha Chang ◽  
...  

AbstractTraditionally engineered to produce novel bioactive molecules, Type I modular polyketide synthases (PKSs) could be engineered as a new biosynthetic platform for the production of de novo fuels, commodity chemicals, and specialty chemicals. Previously, our investigations manipulated the first module of the lipomycin PKS to produce short chain ketones, 3-hydroxy acids, and saturated, branched carboxylic acids. Building upon this work, we have expanded to multi-modular systems by engineering the first two modules of lipomycin to generate unnatural polyketides as potential biofuels and specialty chemicals in Streptomyces albus. First, we produce 20.6 mg/L of the ethyl ketone, 4,6 dimethylheptanone through a reductive loop exchange in LipPKS1 and a ketoreductase knockouts in LipPKS2. We then show that an AT swap in LipPKS1 and a reductive loop exchange in LipPKS2 can produce the potential fragrance 3-isopropyl-6-methyltetrahydropyranone. Highlighting the challenge of maintaining product fidelity, in both bimodular systems we observed side products from premature hydrolysis in the engineered first module and stalled dehydration in reductive loop exchanges. Collectively, our work expands the biological design space and moves the field closer to the production of “designer” biomolecules.HighlightsEngineered lipomycin module 1 and module 2 to produce unnatural polyketides as valuable bio-based chemicalsA reductive loop swap and ketoreductase knockout used to produce 20 mg/mL of a novel ethyl ketone, a gasoline replacementAn acyltransferase swap and reductive loop swap successfully produced δ-lactone, a potential fragrant compoundIncomplete reduction and premature hydrolysis observed in engineered modulesGraphical abstract


2021 ◽  
Author(s):  
Luis Salas Nunez ◽  
Jimmy C. Tai ◽  
Dimitri N. Mavris

2021 ◽  
Author(s):  
Laurens Voet ◽  
Prakash Prashanth ◽  
Raymond Speth ◽  
Jayant Sabnis ◽  
Choon Tan ◽  
...  

2003 ◽  
Vol 154 (12) ◽  
pp. 498-503 ◽  
Author(s):  
Ingo Burgert

Three investigations into the mechanical relevance of wood rays were combined for this article. The main objective was to show, that, apart from physiological functions, rays also significantly influence the radial strength and stiffness of wood. In the first approach twelve deciduous tree species with various proportions of fractions of rays were examined for their transverse tensile strength and stiffness. The second approach was based on the comparison of the radial mechanical properties of wood with a very high proportion of fraction of rays and beech wood with a normal volume. In these two investigations the mechanical relevance of rays could only be deduced indirectly. By isolating big rays of beech and carrying out tensile tests on the tissue, we found direct evidence for the mechanical relevance. The results are discussed with regard to their biomechanical relevance. The importance of a radial reinforcement for the wood is underlined. Moreover, the principle of multi-functionality in nature is emphasized in keeping with a possible transfer of biological design to technical solutions.


Author(s):  
Rubí Estela Morales-Salas ◽  
Daniel Montes-Ponce

A virtual learning environment is conceived as an interaction space that ease the realization of mediated activities by technology, in this case the internet; besides using multimedia materials, learning objects, social networks, among others; which have changed imminently the traditional education. In this article an instrument is proposed in a checklist format, to evaluate any platform that has interaction spaces such as a Virtual Learning Environment, in this case responding to four spaces or general indicators: information Space, Mediation / Interaction Space, Instructional Design Space and Exhibition Space. Criteria are used according to the interactions and activities carried out by the consultant and virtual student. These, in turn, come up from the analysis and interaction of the advisers achieved in the discussion forums and portfolio activities through collaborative work. It was situated as a qualitative research, with a descriptive nature since it is not limited to data collection only, but also it refers and analyzes the interaction of the advisers achieved in the discussion forums and portfolio activities through the collaborative work of the workshop course "Virtual Learning Environments" developed in a virtual learning environment.


Author(s):  
Rajesh Dubey ◽  
Udaya K. Chowdary ◽  
Venkateswarlu V.

A controlled release formulation of metoclopramide was developed using a combination of hypromellose (HPMC) and hydrogenated castor oil (HCO). Developed formulations released the drug over 20 hr with release kinetics following Higuchi model. Compared to HCO, HPMC showed significantly higher influence in controlling the drug release at initial as well as later phase. The difference in the influence can be explained by the different swelling and erosion behaviour of the polymers. Effect of the polymers on release was optimized using a face-centered central composite design to generate a predictable design space. Statistical analysis of the drug release at various levels indicated a linear effect of the polymers’ levels on the drug release. The release profile of formulations containing the polymer levels at extremes of their ranges in design space was found to be similar to the predicted release profile


Author(s):  
Sunita Gupta ◽  
Sakar Gupta ◽  
Dinesh Goyal

: A serious problem in Wireless Sensor Networks (WSNs) is to attain high-energy efficiency as battery is used to power and have limited stored energy. They can’t be suitably replaced or recharged. Appearance of renewable energy harvesting techniques and their combination with sensor devices gives Energy Harvesting Wireless Sensor Networks (EHWSNs). IoT is now becoming part of our lives, comforting simplifying our routines and work life. IoT is very popular . It connects together, computes, communicates and performs the required task. IoT is actually a network of physical devices or things that can interact with each other to share information. This paper gives an overview of WSN and IoT, related work, different ways of connecting WSN with internet, development of smart home, challenges for WSN etc. Next a Framework for performance optimization in IoT is given and QC-PC-MCSC heuristic is analyzed in terms of Energy Efficiency and Life Time of a sensor on Energy Latency Density Design Space, a topology management application that is power efficient. QC-PC-MCSC and QC-MCSC are compared for Energy Efficiency and Life Time of a sensor over energy latency density design space, a topology management application.


Sign in / Sign up

Export Citation Format

Share Document