In vitro and in vivo assays to assess the functions of calnexin and calreticulin in ER protein folding and quality control

Methods ◽  
2005 ◽  
Vol 35 (4) ◽  
pp. 338-347 ◽  
Author(s):  
Marie-Eve Paquet ◽  
Michael R. Leach ◽  
David B. Williams
2017 ◽  
Vol 17 (5) ◽  
pp. 712-718 ◽  
Author(s):  
Cristiene Costa Carneiro ◽  
Aroldo Vieira de Moraes-Filho ◽  
Amanda Silva Fernandes ◽  
Suzana da Costa Santos ◽  
Daniela de Melo e Silva ◽  
...  
Keyword(s):  

1995 ◽  
Vol 23 (1) ◽  
pp. 61-73
Author(s):  
Coenraad Hendriksen ◽  
Johan van der Gun

In the quality control of vaccine batches, the potency testing of inactivated vaccines is one of the areas requiring very large numbers of animals, which usually suffer significant distress as a result of the experimental procedures employed. This article deals with the potency testing of diphtheria and tetanus toxoids, two vaccines which are used extensively throughout the world. The relevance of the potency test prescribed by the European Pharmacopoeia monographs is questioned. The validity of the potency test as a model for the human response, the ability of the test to be standardised, and the relevance of the test in relation to the quality of the product are discussed. It is concluded that the potency test has only limited predictive value for the antitoxin responses to be expected in recipients of these toxoids. An alternative approach for estimating the potency of toxoid batches is discussed, in which a distinction is made between estimation of the immunogenic potency of the first few batches obtained from a seed lot and monitoring the consistency of the quality of subsequent batches. The use of animals is limited to the first few batches. Monitoring the consistency of the quality of subsequent batches is based on in vitro test methods. Factors which hamper the introduction and acceptance of the alternative approach are considered. Finally, proposals are made for replacement, reduction and/or refinement (the Three Rs) in the use of animals in the routine potency testing of toxoids.


2020 ◽  
Vol 6 (4) ◽  
pp. 287
Author(s):  
Daniela Costa ◽  
Rui M. Tavares ◽  
Paula Baptista ◽  
Teresa Lino-Neto

An increase in cork oak diseases caused by Biscogniauxia mediterranea and Diplodia corticola has been reported in the last decade. Due to the high socio-economic and ecologic importance of this plant species in the Mediterranean Basin, the search for preventive or treatment measures to control these diseases is an urgent need. Fungal endophytes were recovered from cork oak trees with different disease severity levels, using culture-dependent methods. The results showed a higher number of potential pathogens than beneficial fungi such as cork oak endophytes, even in healthy plants. The antagonist potential of a selection of eight cork oak fungal endophytes was tested against B. mediterranea and D. corticola by dual-plate assays. The tested endophytes were more efficient in inhibiting D. corticola than B. mediterranea growth, but Simplicillium aogashimaense, Fimetariella rabenhorstii, Chaetomium sp. and Alternaria alternata revealed a high potential to inhibit the growth of both. Simplicillium aogashimaense caused macroscopic and microscopic mycelial/hyphal deformations and presented promising results in controlling both phytopathogens’ growth in vitro. The evaluation of the antagonistic potential of non-volatile and volatile compounds also revealed that A. alternata compounds could be further explored for inhibiting both pathogens. These findings provide valuable knowledge that can be further explored in in vivo assays to find a suitable biocontrol agent for these cork oak diseases.


2017 ◽  
Vol 217 (2) ◽  
pp. 635-647 ◽  
Author(s):  
Zhenwei Gong ◽  
Inmaculada Tasset ◽  
Antonio Diaz ◽  
Jaime Anguiano ◽  
Emir Tas ◽  
...  

Chaperone-mediated autophagy (CMA) serves as quality control during stress conditions through selective degradation of cytosolic proteins in lysosomes. Humanin (HN) is a mitochondria-associated peptide that offers cytoprotective, cardioprotective, and neuroprotective effects in vivo and in vitro. In this study, we demonstrate that HN directly activates CMA by increasing substrate binding and translocation into lysosomes. The potent HN analogue HNG protects from stressor-induced cell death in fibroblasts, cardiomyoblasts, neuronal cells, and primary cardiomyocytes. The protective effects are lost in CMA-deficient cells, suggesting that they are mediated through the activation of CMA. We identified that a fraction of endogenous HN is present at the cytosolic side of the lysosomal membrane, where it interacts with heat shock protein 90 (HSP90) and stabilizes binding of this chaperone to CMA substrates as they bind to the membrane. Inhibition of HSP90 blocks the effect of HNG on substrate translocation and abolishes the cytoprotective effects. Our study provides a novel mechanism by which HN exerts its cardioprotective and neuroprotective effects.


Author(s):  
You Dong Liu ◽  
Xiao Peng Zhuang ◽  
Dong Lan Cai ◽  
Can Cao ◽  
Qi Sheng Gu ◽  
...  

Abstract Background MicroRNAs (miRNAs) are abundant in tumor-derived extracellular vesicles (EVs) and the functions of extracellular miRNA to recipient cells have been extensively studied with tumorigenesis. However, the role of miRNA in EV secretion from cancer cells remains unknown. Methods qPCR and bioinformatics analysis were applied for determining extracellular let-7a expression from CRC patient serum and cells. Nanosight particle tracking analysis was performed for investigating the effect of let-7a on EV secretion. Luciferase reporter assays was used for identifying targeted genes synaptosome-associated protein 23 (SNAP23). In vitro and in vivo assays were used for exploring the function of let-7a/SNAP23 axis in CRC progression. Bioenergetic assays were performed for investigating the role of let-7a/SNAP23 in cellular metabolic reprogramming. Results let-7a miRNA was elevated in serum EVs from CRC patients and was enriched in CRC cell-derived EVs. We determined that let-7a could suppress EV secretion directly targeting SNAP23. In turn, SNAP23 promotes EV secretion of let-7a to downregulate the intracellular let-7a expression. In addition, we found a novel mechanism of let-7a/SNAP23 axis by regulating mitochondrial oxidative phosphorylation (OXPHOS) through Lin28a/SDHA signaling pathway. Conclusions Let-7a plays an essential role in not only inhibiting EV secretion, but also suppressing OXPHOS through SNAP23, resulting in the suppression of CRC progression, suggesting that let-7a/SNAP23 axis could provide not only effective tumor biomarkers but also novel targets for tumor therapeutic strategies.


2021 ◽  
Author(s):  
The Michael J Fox Foundation Pff Standardization Consortium

This is a consensus protocol developed through discussions with Laura Volpicelli-Daley, Caryl Sortwell, Kelvin Luk, Lindsey Gottler, and Virginia Lee. This protocol is intended for research purposes only, using specially-formulated monomeric alpha-synuclein protein available for purchase at Proteos, Inc as the result of efforts by The Michael J. Fox Foundation (MJFF). Each batch of the “Alpha-Synuclein Monomer Protein for Making Pre- Formed Fibrils” has undergone internal purification and quality control at Proteos in addition to external validation to confirm successful generation of pathogenic aSyn PFFs. See Reference section for methods and results from application of alpha-synuclein pre-formed fibrils (aSyn PFFs) in primary neuron cultures in vitro or in mice in vivo. This protocol is referenced in the Polinski et al 2018 paper entitled "Best Practices for Generating and Using Alpha-Synuclein Pre-Formed Fibrils to Model Parkinson's Disease in Rodents" (doi: 10.3233/JPD-171248).


2021 ◽  
Author(s):  
The Michael J Fox Foundation Pff Standardization Consortium

This is a consensus protocol developed through discussions with Laura Volpicelli-Daley, Caryl Sortwell, Kelvin Luk, Lindsey Gottler, and Virginia Lee. This protocol is intended for research purposes only, using specially-formulated monomeric alpha-synuclein protein available for purchase at Proteos, Inc as the result of efforts by The Michael J. Fox Foundation (MJFF). Each batch of the “Alpha-Synuclein Monomer Protein for Making Pre- Formed Fibrils” has undergone internal purification and quality control at Proteos in addition to external validation to confirm successful generation of pathogenic aSyn PFFs. See Reference section for methods and results from application of alpha-synuclein pre-formed fibrils (aSyn PFFs) in primary neuron cultures in vitro or in mice in vivo. This protocol is referenced in the Polinski et al 2018 paper entitled "Best Practices for Generating and Using Alpha-Synuclein Pre-Formed Fibrils to Model Parkinson's Disease in Rodents" (doi: 10.3233/JPD-171248).


2003 ◽  
Vol 3 ◽  
pp. 623-635 ◽  
Author(s):  
Ivan Y. Torshin ◽  
Robert W. Harrison

How a unique three-dimensional structure is rapidly formed from the linear sequence of a polypeptide is one of the important questions in contemporary science. Apart from biological context ofin vivoprotein folding (which has been studied only for a few proteins), the roles of the fundamental physical forces in thein vitrofolding remain largely unstudied. Despite a degree of success in using descriptions based on statistical and/or thermodynamic approaches, few of the current models explicitly include more basic physical forces (such as electrostatics and Van Der Waals forces). Moreover, the present-day models rarely take into account that the protein folding is, essentially, a rapid process that produces a highly specific architecture. This review considers several physical models that may provide more direct links between sequence and tertiary structure in terms of the physical forces. In particular, elaboration of such simple models is likely to produce extremely effective computational techniques with value for modern genomics.


2017 ◽  
Vol 68 ◽  
pp. 83-90 ◽  
Author(s):  
Gabriel Vinderola ◽  
Miguel Gueimonde ◽  
Carlos Gomez-Gallego ◽  
Lucrecia Delfederico ◽  
Seppo Salminen
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document