Intervention criterion and control strategy of active front steering system for emergency rescue vehicle

2021 ◽  
Vol 148 ◽  
pp. 107160
Author(s):  
Chen Zhou ◽  
Xin-hui Liu ◽  
Fei-xiang Xu
2013 ◽  
Vol 13 (21) ◽  
pp. 4463-4469
Author(s):  
Shuo Zhang ◽  
Qiang Yu ◽  
Chenyu Zhou ◽  
Peilong Shi ◽  
Peipei Zhang

Author(s):  
Gang Qin ◽  
Jinglai Wu ◽  
Yunqing Zhang ◽  
Liping Chen

Hydro-pneumatic suspension and multi-bridges steering system, which can meet the demands of ride comfort and steering maneuverability of the crane by their excellent nonlinear stiffness and damping characteristics and innovative control technology in their electro-hydraulic rear axle steering system, is used for construction industry vehicles widely. Such systems have great influences on controllability, steering stability, driving comfort and safety of a vehicle. Such a complex system includes mechanical multi-body, hydraulic, and control components which are influenced each other. However, few previous works concerned the coupling effects from multidisciplinary view, in general just single domain detail model are built and studied. This paper presents a detailed 5 axle all-terrain crane with hydro-pneumatic suspension and multi-bridges steering system consisting of the mechanical parts of suspension and steering multi-body model with ADAMS, suspension and steering hydraulic model that contain cylinder, control valve, and hydraulic pipes, etc., and the control strategy are built with AMESim software. A co-simulation is carried out to study the handling and stability of the vehicle affected by the hydro-pneumatic suspension and electro-hydraulic steering system. Some typical handling maneuvers, such as cornering steering releasing test and pylon slalom course of test are carried out by co-simulation to evaluate the control strategy of the steering and hydro-pneumatic suspension performance numerically. Comparisons between measured data and simulation results validate the correctness of the model.


Author(s):  
Weihua Zhang ◽  
Wuwei Chen ◽  
Hansong Xiao ◽  
Hui Zhu

Integrated vehicle control has been an important research topic in the area of vehicle dynamics and control in recent years. The aim of integrated vehicle control is to improve the overall vehicle performance including handling, stability and comfort through creating synergies in the use of sensor information, hardware, and control strategies. This paper proposes a two-layer hierarchical control architecture for integrated control of active suspension system (ASS) and active front steering system (AFS). The upper layer controller is designed to coordinate the interactions between the ASS and the AFS. While in the lower layer, the two controllers including the ASS and the AFS, are developed independently to achieve their local control objectives. Simulation results show that the proposed hierarchical control system is able to improve both the ride comfort and the lateral stability compared to the non-integrated control approach.


TAPPI Journal ◽  
2018 ◽  
Vol 17 (05) ◽  
pp. 295-305
Author(s):  
Wesley Gilbert ◽  
Ivan Trush ◽  
Bruce Allison ◽  
Randy Reimer ◽  
Howard Mason

Normal practice in continuous digester operation is to set the production rate through the chip meter speed. This speed is seldom, if ever, adjusted except to change production, and most of the other digester inputs are ratioed to it. The inherent assumption is that constant chip meter speed equates to constant dry mass flow of chips. This is seldom, if ever, true. As a result, the actual production rate, effective alkali (EA)-to-wood and liquor-to-wood ratios may vary substantially from assumed values. This increases process variability and decreases profits. In this report, a new continuous digester production rate control strategy is developed that addresses this shortcoming. A new noncontacting near infrared–based chip moisture sensor is combined with the existing weightometer signal to estimate the actual dry chip mass feedrate entering the digester. The estimated feedrate is then used to implement a novel feedback control strategy that adjusts the chip meter speed to maintain the dry chip feedrate at the target value. The report details the results of applying the new measurements and control strategy to a dual vessel continuous digester.


Sign in / Sign up

Export Citation Format

Share Document