scholarly journals 714. Structure-Based Engineering of the FokI DNA Cleavage Domain in the Context of a Chimeric Endonuclease: Towards Maximally Efficient “Gene Editing” Therapy

2004 ◽  
Vol 9 ◽  
pp. S272
2021 ◽  
Vol 7 (7) ◽  
pp. 505
Author(s):  
Ping Zhang ◽  
Yu Wang ◽  
Chenxi Li ◽  
Xiaoyu Ma ◽  
Lan Ma ◽  
...  

Cryptococcus neoformans and Cryptococcus deneoformans are opportunistic fungal pathogens found worldwide that are utilized to reveal mechanisms of fungal pathogenesis. However, their low homologous recombination frequency has greatly encumbered genetic studies. In preliminary work, we described a ‘suicide’ CRISPR-Cas9 system for use in the efficient gene editing of C. deneoformans, but this has not yet been used in the C. neoformans strain. The procedures involved in constructing vectors are time-consuming, whether they involve restriction enzyme-based cloning of donor DNA or the introduction of a target sequence into the gRNA expression cassette via overlap PCR, as are sophisticated, thus impeding their widespread application. Here, we report the optimized and simplified construction method for all-in-one CRISPR-Cas9 vectors that can be used in C. neoformans and C. deneoformans strains respectively, named pNK003 (Genbank: MW938321) and pRH003 (Genbank: KX977486). Taking several gene manipulations as examples, we also demonstrate the accuracy and efficiency of the new simplified all-in-one CRISPR-Cas9 genome editing tools in both Serotype A and Serotype D strains, as well as their ability to eliminate Cas9 and gDNA cassettes after gene editing. We anticipate that the availability of new vectors that can simplify and streamline the technical steps for all-in-one CRISPR-Cas9 construction could accelerate genetic studies of the Cryptococcus species.


2021 ◽  
Author(s):  
Dashan Sun

CRISPR system is a powerful gene editing tool which has already been reported to address a variety of gene relevant diseases in different cell lines. However, off-target effect and immune response caused by Cas9 remain two fundamental problems. In our work, time-delayed safety switches are designed based on either artificial ultrasensitivity transmission module or intrinsic time delay in biomolecular activities. By addressing gene therapy efficiency, off-target effect, immune response and drug accumulation, we hope our safety switches may offer inspiration in realizing safe and efficient gene therapy in humans.


Author(s):  
Yoo Kyung Kang ◽  
Ju Hee Lee ◽  
San Hae Im ◽  
Joo Hoon Lee ◽  
Juhee Jeong ◽  
...  

2019 ◽  
Vol 78 (5) ◽  
pp. 676-682 ◽  
Author(s):  
Lan Zhao ◽  
Jian Huang ◽  
Yunshan Fan ◽  
Jun Li ◽  
Tianming You ◽  
...  

ObjectivesOsteoarthritis (OA) is a painful and debilitating disease and it is associated with aberrant upregulation of multiple factors, including matrix metalloproteinase 13 (MMP13), interleukin-1β (IL-1β) and nerve growth factor (NGF). In this study, we aimed to use the CRISPR/Cas9 technology, a highly efficient gene-editing tool, to study whether the ablation of OA-associated genes has OA-modifying effects.MethodsWe performed intra-articular injection of adeno-associated virus, which expressed CRISPR/Cas9 components to target each of the genes encoding MMP13, IL-1β and NGF, in a surgically induced OA mouse model. We also tested triple ablations of NGF, MMP13 and IL-1β.ResultsLoss-of-function of NGF palliates pain but worsens joint damage in the surgically induced OA model. Ablation of MMP13 or IL-1β reduces the expression of cartilage-degrading enzymes and attenuates structural deterioration. Targeting both MMP13 and IL-1β significantly mitigates the adverse effects of NGF blockade on the joints.ConclusionsCRISPR-mediated ablation of NGF alleviates OA pain, and deletion of MMP13-1β or IL-1β attenuates structural damage in a post-traumatic OA model. Multiplex ablations of NGF, MMP13 and IL-1β provide benefits on both pain management and joint structure maintenance. Our results suggest that CRISPR-based gene editing is useful for the identification of promising drug targets and the development of feasible therapeutic strategies for OA treatment.


2016 ◽  
Vol 3 ◽  
pp. 16057 ◽  
Author(s):  
Arnold Park ◽  
Patrick Hong ◽  
Sohui T Won ◽  
Patricia A Thibault ◽  
Frederic Vigant ◽  
...  

2019 ◽  
Vol 19 (3) ◽  
pp. 164-174 ◽  
Author(s):  
Jinyu Sun ◽  
Jianchu Wang ◽  
Donghui Zheng ◽  
Xiaorong Hu

Abstract Clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) is one of the most versatile and efficient gene editing technologies, which is derived from adaptive immune strategies for bacteria and archaea. With the remarkable development of programmable nuclease-based genome engineering these years, CRISPR-Cas9 system has developed quickly in recent 5 years and has been widely applied in countless areas, including genome editing, gene function investigation and gene therapy both in vitro and in vivo. In this paper, we briefly introduce the mechanisms of CRISPR-Cas9 tool in genome editing. More importantly, we review the recent therapeutic application of CRISPR-Cas9 in various diseases, including hematologic diseases, infectious diseases and malignant tumor. Finally, we discuss the current challenges and consider thoughtfully what advances are required in order to further develop the therapeutic application of CRISPR-Cas9 in the future.


2020 ◽  
Vol 3 (1) ◽  
pp. 6-16
Author(s):  
Prabin Adhikari ◽  
Mousami Poudel

AbstractThe discovery of an adaptive immune system especially in archae and bacteria, CRISPR/Cas has revolutionized the field of agriculture and served as a potential gene editing tool, producing great excitement to the molecular scientists for the improved genetic manipulations. CRISPR/Cas9 is a RNA guided endonuclease which is popular among its predecessors ZFN and TALEN’s. The utilities of CRISPR from its predecessors is the use of short RNA fragments to locate target and breaking the double strands which avoids the need of protein engineering, thus allowing time efficiency measure for gene editing. It is a simple, flexible and highly efficient programmable DNA cleavage system that can be modified for widespread applications like knocking out the genes, controlling transcription, modifying epigenomes, controlling genome-wide screens, modifying genes for disease and stress tolerance and imaging chromosomes. However, gene cargo delivery system, off target cutting and issues on the safety of living organisms imposes major challenge to this system. Several attempts have been done to rectify these challenges; using sgRNA design software, cas9 nickases and other mutants. Thus, further addressing these challenges may open the avenue for CRISPR/cas9 for addressing the agriculture related problems.


2015 ◽  
Author(s):  
Serif Senturk ◽  
Nitin H Shirole ◽  
Dawid D. Nowak ◽  
Vincenzo Corbo ◽  
Alexander Vaughan ◽  
...  

The Cas9/CRISPR system is a powerful tool for studying gene function. Here we describe a method that allows temporal control of Cas9/CRISPER activity based on conditional CAS9 destabilization. We demonstrate that fusing an FKBP12-derived destabilizing domain to Cas9 enables conditional rapid and reversible Cas9 expression in vitro and efficient gene-editing in the presence of a guide RNA. Further, we show that this strategy can be easily adapted to co-express, from the same promoter, DD-Cas9 with any other gene of interest, without the latter being co-modulated. In particular, when co-expressed with inducible Cre-ERT2, our system enables parallel, independent manipulation of alleles targeted by Cas9 and traditional recombinase with single-cell specificity. We anticipate this platform will be used for the systematic identification of essential genes and the interrogation of genes functional interactions.


Sign in / Sign up

Export Citation Format

Share Document