Ginsenoside Rg1 protects against acetaminophen-induced liver injury via activating Nrf2 signaling pathway in vivo and in vitro

2018 ◽  
Vol 98 ◽  
pp. 58-68 ◽  
Author(s):  
Chenqing Ning ◽  
Xiaoguang Gao ◽  
Changyuan Wang ◽  
Yulong Kong ◽  
Zhihao Liu ◽  
...  
2020 ◽  
Vol 11 (9) ◽  
pp. 8297-8308
Author(s):  
Yuanyuan Li ◽  
Jialin Xu ◽  
Dongli Li ◽  
Hang Ma ◽  
Yu Mu ◽  
...  

GUB, a main phenolic compound present in guava fruits, could alleviate APAP-induced liver injury in vitro and in vivo by activating the Nrf2 signaling pathway and inhibiting the JNK signaling pathway.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Guo Zu ◽  
Jing Guo ◽  
Ningwei Che ◽  
Tingting Zhou ◽  
Xiangwen Zhang

Abstract Ginsenoside Rg1 (Rg1) is one of the major bioactive ingredients in Panax ginseng, and it attenuates inflammation and apoptosis. The aims of our study were to explore the potential of Rg1 for the treatment of intestinal I/R injury and to determine whether the protective effects of Rg1 were exerted through the Wnt/β-catenin signaling pathway. In this study, Rg1 treatment ameliorated inflammatory factors, ROS and apoptosis that were induced by intestinal I/R injury. Cell viability was increased and cell apoptosis was decreased with Rg1 pretreatment following hypoxia/reoxygenation (H/R) in the in vitro study. Rg1 activated the Wnt/β-catenin signaling pathway in both the in vivo and in vitro models, and in the in vitro study, the activation was blocked by DKK1. Our study provides evidence that pretreatment with Rg1 significantly reduces ROS and apoptosis induced by intestinal I/R injury via activation of the Wnt/β-catenin pathway. Taken together, our results suggest that Rg1 could exert its therapeutic effects on intestinal I/R injury through the Wnt/β-catenin signaling pathway and provide a novel treatment modality for intestinal I/R injury.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Weitao Ji ◽  
Hongyun Shi ◽  
Hailin Shen ◽  
Jing Kong ◽  
Jiayi Song ◽  
...  

Krüppel-like factor 4 (KLF4) is a key transcription factor that regulates genes involved in the proliferation or differentiation in different tissues. Apelin plays roles in cardiovascular functions, metabolic disease, and homeostatic disorder. However, the biological function of apelin in liver disease is still ongoing. In this study, we investigated the mechanism of KLF4-mediated protection against acute liver injury via the inhibition of the apelin signaling pathway. Mice were intraperitoneally injected with carbon tetrachloride (CCl4; 0.2 mL dissolved in 100 mL olive oil, 10 mL/kg) to establish an acute liver injury model. A KLF4 expression plasmid was injected through the tail vein 48 h before CCl4 treatment. In cultured LX-2 cells, pAd-KLF4 or siRNA KLF4 was overexpressed or knockdown, and the mRNA and protein levels of apelin were determined. The results showed that the apelin serum level in the CCl4-injected group was higher than that of control group, and the expression of apelin in the liver tissues was elevated while KLF4 expression was decreased in the CCl4-injected group compared to the KLF4-plasmid-injected group. HE staining revealed serious hepatocellular steatosis in the CCl4-injected mice, and KLF4 alleviated this steatosis in the mice injected with KLF4 plasmid. In vitro experiments showed that tumor necrosis factor-alpha (TNF-α) could downregulate the transcription and translation levels of apelin in LX-2 cells and also upregulate KLF4 mRNA and protein expression. RT-PCR and Western blotting showed that the overexpression of KLF4 markedly decreased basal apelin expression, but knockdown of KLF4 restored apelin expression in TNF-α-treated LX-2 cells. These in vivo and in vitro experiments suggest that KLF4 plays a key role in inhibiting hepatocellular steatosis in acute liver injury, and that its mechanism might be the inhibition of the apelin signaling pathway.


2019 ◽  
Vol 67 (36) ◽  
pp. 10059-10068 ◽  
Author(s):  
Chang Liu ◽  
Yan Cui ◽  
Fuwei Pi ◽  
Yahui Guo ◽  
Yuliang Cheng ◽  
...  

ACS Omega ◽  
2020 ◽  
Vol 5 (22) ◽  
pp. 13096-13107
Author(s):  
Chie Moritani ◽  
Kayoko Kawakami ◽  
Hiroshi Shimoda ◽  
Tadashi Hatanaka ◽  
Etsuko Suzaki ◽  
...  

2020 ◽  
Vol 98 (3) ◽  
pp. 162-168 ◽  
Author(s):  
Yong-mei Jin ◽  
Xiang-ming Tao ◽  
Yi-ning Shi ◽  
Youjin Lu ◽  
Jin-yu Mei

Salvianolic acid B (Sal B) exerts strong antioxidant activity and eliminates the free radical effect. However, how it affects the antioxidant pathway is not very clear. The objective of this study was to investigate the underlying mechanism of Sal B in CCl4-induced acute liver injury, especially its effect on the Nrf2/HO-1 signaling pathway. For the in vivo experiment, an acute liver injury model was induced using CCl4 and treated with Sal B. For the in vitro experiment, an oxidative damage model was established followed by Sal B treatment. Serum biochemical indicators and reactive oxygen species activity were detected using corresponding kits. Oxidant/antioxidant status was determined based on the levels of malondialdehyde, glutathione, and superoxide dismutase. Nrf2 and HO-1 levels were analyzed by Western blotting and immunohistochemical staining. Sal B treatment improved liver histology, decreased the aminotransferase levels, and attenuated oxidative stress in the acute liver injury model. Nrf2 and HO-1 levels were increased both in vivo and in vitro. Sal B suppresses acute liver injury and Nrf2/HO-1 signaling plays a key role in this process.


Cytokine ◽  
2020 ◽  
Vol 130 ◽  
pp. 155058 ◽  
Author(s):  
Ke Yang ◽  
Lianghui Zhan ◽  
Tingting Lu ◽  
Cong Zhou ◽  
Xue Chen ◽  
...  

2019 ◽  
Vol 170 (2) ◽  
pp. 476-488 ◽  
Author(s):  
Xing Liu ◽  
Hongqian Zhao ◽  
Chunyan Luo ◽  
Debin Du ◽  
Jinlong Huang ◽  
...  

AbstractPrevious studies suggest that activation of SIRT1 protects liver from acetaminophen (APAP)-induced injury; however, the detailed mechanism of SIRT1 modulation in this process is still incomplete. Therefore, this study was to investigate the pathophysiological role of SIRT1 in APAP-mediated hepatotoxicity. We found that SIRT1 mRNA and protein were markedly upregulated in human LO2 cells and mouse liver upon APAP exposure. In vitro, the specific knockdown of SIRT1 expression ultimately aggravated APAP-evoked cellular antioxidant defense in LO2 cells. Moreover, lentivirus-mediated knockdown of hepatic SIRT1 expression exacerbated APAP-induced oxidative stress and liver injury, especially reduction of Nrf2 and subsequent downregulation of several antioxidant genes. Intriguingly, 30 mg/kg SRT1720, the specific SIRT1 activator, which greatly enhanced Nrf2 expression and antioxidant defense, and then eventually reversed APAP-induced hepatic liver injury in mice. Furthermore, APAP responsive miR-19b played an important role in regulating SIRT1 expression, whereas overexpression miR-19b largely abolished the induction of SIRT1 by APAP in vitro and in vivo. Specific SIRT1 3′-UTR mutation, which disrupted the interaction of miRNA-3′UTR, and successfully abrogated the modulation by miR-19b. Notably, hepatic miR-19b overexpression worsened the APAP-induced hepatotoxicity. In general, our results support the notion that the strong elevation of SIRT1 by APAP responsive miR-19b may represent a compensatory mechanism to protect liver against the drug-induced damage, at least in part by enhancing Nrf2-mediated antioxidant capacity in the liver.


2020 ◽  
Vol 29 ◽  
pp. 096368972092999 ◽  
Author(s):  
Guanghui Xiu ◽  
Xiuling Li ◽  
Yunyu Yin ◽  
Jintao Li ◽  
Bingqin Li ◽  
...  

Mesenchymal stem cells (MSCs) are thought to have great potential in the therapy of acute liver injury. It is possible that these cells may be regulated by the stromal cell-derived factor-1 (SDF-1)/CXC chemokine receptor-4 (CXCR4) signaling axis, which has been shown to promote stem cells migration in the inflammation-associated diseases. However, the effects of SDF-1/CXCR4 axis on the MSCs-transplantation-based treatment for acute liver injury and the underlying mechanisms are largely unknown. In this study, we sought to determine whether SDF-1/CXCR4 would augment the therapeutic effect of bone marrow mesenchymal stem cells (BMSCs) by promoting their migration, which may result from activating the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway, in a rat acute liver injury model induced by lipopolysaccharide (LPS). We found that BMSCs transplantation markedly attenuated liver injury and improved the survival of LPS-treated rats. Of interest, overexpression of CXCR4 in BMSCs could substantially promote their migration both in vitro and in vivo, and result in even better therapeutic effects. This might be attributed to the activation of PI3K/Akt signaling pathway in BMSCs that is downstream of CXCR4, as demonstrated by the use of the CXCR4 antagonist AMD3100 and PI3K pathway inhibitor LY294002 assays in vitro and in vivo. Together, our results unraveled a novel molecular mechanism for the therapeutic effect of BMSCs for the treatment of acute liver injury, which may shed a new light on the clinical application of BMSCs for acute liver failure.


Sign in / Sign up

Export Citation Format

Share Document