Application of the explicit finite difference simulation method to cyclic voltammetry and its use in electroanalytical investigations

1982 ◽  
Vol 140 (1) ◽  
pp. 65-76 ◽  
Author(s):  
Franco Magno ◽  
Gino Bontempelli ◽  
Milla Andreuzzi-Sedea
2001 ◽  
Vol 123 (6) ◽  
pp. 1159-1172 ◽  
Author(s):  
Mohammad B. Shafii ◽  
Amir Faghri ◽  
Yuwen Zhang

Analytical models for both unlooped and looped Pulsating Heat Pipes (PHPs) with multiple liquid slugs and vapor plugs are presented in this study. The governing equations are solved using an explicit finite difference scheme to predict the behavior of vapor plugs and liquid slugs. The results show that the effect of gravity on the performance of top heat mode unlooped PHP is insignificant. The effects of diameter, charge ratio, and heating wall temperature on the performance of looped and unlooped PHPs are also investigated. The results also show that heat transfer in both looped and unlooped PHPs is due mainly to the exchange of sensible heat.


2013 ◽  
Vol 423-426 ◽  
pp. 1292-1295 ◽  
Author(s):  
Xing Yun Wang ◽  
Bin Peng ◽  
Xiao Chao Tang ◽  
Lian Fan

Based on the numerical simulation method, this paper has established the numerical simulation method by using of finite difference software of FLAC3D through establishing interface for digging pile-soil. It can consider mutual effect of digging pile-soil. The uplift bearing capacity of the digging pile in slope ground was calculated and the affecting factors of the bearing capacity were analyzed. The results show that the uplift bearing capacity has a negative correlation with the slope ratio, and has a positive correlation with the width or height of the foundation, which can be expressed as a quadratic polynomial. But when the slope ratio is smaller than a certain extent, the capacity no longer increases. Nonlinear regression analysis of calculation data are carried out. Finally, the calculation method of uplift bearing capacity about pile in the slope is developed, which can provide a reference to specification revision and engineering.


Geophysics ◽  
2021 ◽  
pp. 1-71
Author(s):  
Hongwei Liu ◽  
Yi Luo

The finite-difference solution of the second-order acoustic wave equation is a fundamental algorithm in seismic exploration for seismic forward modeling, imaging, and inversion. Unlike the standard explicit finite difference (EFD) methods that usually suffer from the so-called "saturation effect", the implicit FD methods can obtain much higher accuracy with relatively short operator length. Unfortunately, these implicit methods are not widely used because band matrices need to be solved implicitly, which is not suitable for most high-performance computer architectures. We introduce an explicit method to overcome this limitation by applying explicit causal and anti-causal integrations. We can prove that the explicit solution is equivalent to the traditional implicit LU decomposition method in analytical and numerical ways. In addition, we also compare the accuracy of the new methods with the traditional EFD methods up to 32nd order, and numerical results indicate that the new method is more accurate. In terms of the computational cost, the newly proposed method is standard 8th order EFD plus two causal and anti-causal integrations, which can be applied recursively, and no extra memory is needed. In summary, compared to the standard EFD methods, the new method has a spectral-like accuracy; compared to the traditional LU-decomposition implicit methods, the new method is explicit. It is more suitable for high-performance computing without losing any accuracy.


1988 ◽  
Vol 1988 (163) ◽  
pp. 1-16 ◽  
Author(s):  
Hideaki Miyata ◽  
Masato Katsumata ◽  
Young-Gill Lee ◽  
Hisashi Kajitani

2002 ◽  
Vol 24 (1) ◽  
pp. 46-50
Author(s):  
Nguyen Hong Phan ◽  
Nguyen Van Diep

This paper can be considered as continuous part of [1], where the generalized diffusion theory of rigid spherical particle sedimentation in viscous fluid was investigated. Here a numerical solution of non-stationary sedimentation process is obtained by using the explicit finite difference method. The obtained results show that this model can be used for qualitative study of physical phenomenon of sedimentation problem.


Sign in / Sign up

Export Citation Format

Share Document