Mouse models of insulin resistance and type 2 diabetes

2004 ◽  
Vol 65 (1) ◽  
pp. 51-59 ◽  
Author(s):  
C. Postic ◽  
F. Mauvais-Jarvis ◽  
J. Girard
2017 ◽  
Author(s):  
Siyuan Kong ◽  
Jinxue Ruan ◽  
Kaiyi Zhang ◽  
Bingjun Hu ◽  
Yuzhu Cheng ◽  
...  

Background. Type 2 diabetes, a chronic disease to which susceptibility is hereditary, is characterized by insulin resistance accompanied by defective insulin secretion. Mouse models, especially transgenic mice, play an important role in medical research. However, the transgenic mouse models that have been used in diabetes research are involved with single transgenes, focusing on the insulin gene or its mutants. Thus they mainly provide information related to Type 1 diabetes. Methods. Here, we attempted to focus comprehensively on genes related to pancreatic islet damage, peripheral insulin resistance and related environmental inducing factors by generating single-transgenic mice (CHOP), dual-transgenic mice (hIAPP-CHOP) and triple-transgenic mice (11β-HSD1-hIAPP-CHOP). The latter two types of transgenic animals were induced with high-fat, high-sucrose diets (HFHSD). We evaluated and analyzed the diabetes-related symptoms and the histopathological and immunohistochemical features of the transgenic animals. Results. Specifically, in the triple-transgene animals, the results of intraperitoneal glucose tolerance tests (IPGTT) began to change 60 days after induction (p<0.001). After 190 days of induction, the body weights (p<0.01) and plasma glucose levels of the animals in the Tg group were higher than those of the animals in the Nc group. After the mice were sacrificed, large amounts of lipid were found deposited in the adipose tissues (p<0.01) and ectopically deposited in the non-adipose tissues (p<0.05 or 0.01) of the animals in the Tg HFHSD group. The weights of the kidneys and hearts of the Tg animals were significantly increased (p<0.01). Serum C-P was decreased due to transgene effects, and insulin levels were increased due to the effects of the high-fat high-sucrose diet in the Tg HFHSD group, indicating that damaged insulin secretion and insulin resistance hyperinsulinemia existed simultaneously in these animals. The serum corticosterone levels of the animals in the Tg group were slightly higher than those of the Nc animals due to the effects of the 11βHSD-1 transgene and obesity. In the Tg HFHSD group, hepatic adipose deposition was more severe and the pancreatic islet area was enlarged under compensation, accompanying apoptosis. In the Tg ControlD group, hepatic adipose deposition was also severe, pancreatic islets were damaged, and their areas were decreased (p<0.05), and apoptosis of pancreatic cells occurred. Taken together, these data show that the transgenes led to early-stage pathological changes characteristic of type 2 diabetes in the triple-transgene HFHSD group. The disease of triple-transgenic mice was more severe than that of dual or single-transgenic mice. Conclusion. The use of multi-transgenes involved in insulin resistance and pancreatic apoptosis is a better way to generate polygene-related early-stage diabetes models.


2007 ◽  
Vol 87 (2) ◽  
pp. 507-520 ◽  
Author(s):  
David B. Savage ◽  
Kitt Falk Petersen ◽  
Gerald I. Shulman

Although abnormal glucose metabolism defines type 2 diabetes mellitus (T2DM) and accounts for many of its symptoms and complications, efforts to understand the pathogenesis of T2DM are increasingly focused on disordered lipid metabolism. Here we review recent human studies exploring the mechanistic links between disorders of fatty acid/lipid metabolism and insulin resistance. As “mouse models of insulin resistance” were comprehensively reviewed in Physiological Reviews by Nandi et al. in 2004, we will concentrate on human studies involving the use of isotopes and/or magnetic resonance spectroscopy, occasionally drawing on mouse models which provide additional mechanistic insight.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4542 ◽  
Author(s):  
Siyuan Kong ◽  
Jinxue Ruan ◽  
Kaiyi Zhang ◽  
Bingjun Hu ◽  
Yuzhu Cheng ◽  
...  

Background Type 2 diabetes is characterized by insulin resistance accompanied by defective insulin secretion. Transgenic mouse models play an important role in medical research. However, single transgenic mouse models may not mimic the complex phenotypes of most cases of type 2 diabetes. Methods Focusing on genes related to pancreatic islet damage, peripheral insulin resistance and related environmental inducing factors, we generated single-transgenic (C/EBP homology protein, CHOP) mice (CHOP mice), dual-transgenic (human islet amyloid polypeptide, hIAPP; CHOP) mice (hIAPP-CHOP mice) and triple-transgenic (11β-hydroxysteroid dehydrogenase type 1, 11β-HSD1; hIAPP; CHOP) mice (11β-HSD1-hIAPP- CHOP mice). The latter two types of transgenic (Tg) animals were induced with high-fat high-sucrose diets (HFHSD). We analyzed the diabetes-related symptoms and histology features of the transgenic animals. Results Comparing symptoms on the spot-checked points, we determined that the triple-transgene mice were more suitable for systematic study. The results of intraperitoneal glucose tolerance tests (IPGTT) of triple-transgene animals began to change 60 days after induction (p < 0.001). After 190 days of induction, the body weights (p < 0.01) and plasma glucose of the animals in Tg were higher than those of the animals in Negative Control (Nc). After sacrificed, large amounts of lipid were found deposited in adipose (p < 0.01) and ectopically deposited in the non-adipose tissues (p < 0.05 or 0.01) of the animals in the Tg HFHSD group. The weights of kidneys and hearts of Tg animals were significantly increased (p < 0.01). Serum C peptide (C-P) was decreased due to Tg effects, and insulin levels were increased due to the effects of the HFHSD in the Tg HFHSD group, indicating that damaged insulin secretion and insulin resistance hyperinsulinemia existed simultaneously in these animals. The serum corticosterone of Tg was slightly higher than those of Nc due to the effects of the 11βHSD-1 transgene and obesity. In Tg HFHSD, hepatic adipose deposition was more severe and the pancreatic islet area was enlarged under compensation, accompanying apoptosis. In the transgenic control diet (Tg ControlD) group, hepatic adipose deposition was also severe, pancreatic islets were damaged, and their areas were decreased (p < 0.05), and apoptosis of pancreatic cells occurred. Taken together, these data show the transgenes led to early-stage pathological changes characteristic of type 2 diabetes in the triple-transgene HFHSD group. The disease of triple-transgenic mice was more severe than that of dual or single-transgenic mice. Conclusion The use of multi-transgenes involved in insulin resistance and pancreatic apoptosis is a better way to generate polygene-related early-stage diabetes models.


Author(s):  
Kitt Falk Petersen ◽  
Douglas Rothman ◽  
Gerald I Shulman

Carter et al. report that exposure to static magnetic and electric fields (sBE), for as little as 3 days, reverses glucose intolerance and insulin resistance in diet-induced and genetic mouse models of type 2 diabetes (1). They hypothesize that sBE triggers a systemic redox response to modulate insulin sensitivity and that sBE could therefore be used as a noninvasive treatment for type 2 diabetes. However, these authors were unable to define a mechanism to explain how SBE might alter ROS or to identify the specific proteins that mediate this effect. Given these limitations we propose an alternative hypothesis to explain their findings.


2017 ◽  
Author(s):  
Siyuan Kong ◽  
Jinxue Ruan ◽  
Kaiyi Zhang ◽  
Bingjun Hu ◽  
Yuzhu Cheng ◽  
...  

Background. Type 2 diabetes, a chronic disease to which susceptibility is hereditary, is characterized by insulin resistance accompanied by defective insulin secretion. Mouse models, especially transgenic mice, play an important role in medical research. However, the transgenic mouse models that have been used in diabetes research are involved with single transgenes, focusing on the insulin gene or its mutants. Thus they mainly provide information related to Type 1 diabetes. Methods. Here, we attempted to focus comprehensively on genes related to pancreatic islet damage, peripheral insulin resistance and related environmental inducing factors by generating single-transgenic mice (CHOP), dual-transgenic mice (hIAPP-CHOP) and triple-transgenic mice (11β-HSD1-hIAPP-CHOP). The latter two types of transgenic animals were induced with high-fat, high-sucrose diets (HFHSD). We evaluated and analyzed the diabetes-related symptoms and the histopathological and immunohistochemical features of the transgenic animals. Results. Specifically, in the triple-transgene animals, the results of intraperitoneal glucose tolerance tests (IPGTT) began to change 60 days after induction (p<0.001). After 190 days of induction, the body weights (p<0.01) and plasma glucose levels of the animals in the Tg group were higher than those of the animals in the Nc group. After the mice were sacrificed, large amounts of lipid were found deposited in the adipose tissues (p<0.01) and ectopically deposited in the non-adipose tissues (p<0.05 or 0.01) of the animals in the Tg HFHSD group. The weights of the kidneys and hearts of the Tg animals were significantly increased (p<0.01). Serum C-P was decreased due to transgene effects, and insulin levels were increased due to the effects of the high-fat high-sucrose diet in the Tg HFHSD group, indicating that damaged insulin secretion and insulin resistance hyperinsulinemia existed simultaneously in these animals. The serum corticosterone levels of the animals in the Tg group were slightly higher than those of the Nc animals due to the effects of the 11βHSD-1 transgene and obesity. In the Tg HFHSD group, hepatic adipose deposition was more severe and the pancreatic islet area was enlarged under compensation, accompanying apoptosis. In the Tg ControlD group, hepatic adipose deposition was also severe, pancreatic islets were damaged, and their areas were decreased (p<0.05), and apoptosis of pancreatic cells occurred. Taken together, these data show that the transgenes led to early-stage pathological changes characteristic of type 2 diabetes in the triple-transgene HFHSD group. The disease of triple-transgenic mice was more severe than that of dual or single-transgenic mice. Conclusion. The use of multi-transgenes involved in insulin resistance and pancreatic apoptosis is a better way to generate polygene-related early-stage diabetes models.


Sign in / Sign up

Export Citation Format

Share Document