Expression and biological activity of Baculovirus generated wild-type human slow α tropomyosin and the Met9Arg mutant responsible for a dominant form of nemaline myopathy

2002 ◽  
Vol 296 (2) ◽  
pp. 300-304 ◽  
Author(s):  
P Anthony Akkari ◽  
Yuhua Song ◽  
Sarah Hitchcock-DeGregori ◽  
Lori Blechynden ◽  
Nigel Laing
1991 ◽  
Vol 11 (7) ◽  
pp. 3603-3612
Author(s):  
S Marcus ◽  
G A Caldwell ◽  
D Miller ◽  
C B Xue ◽  
F Naider ◽  
...  

We have undertaken total synthesis of the Saccharomyces cerevisiae a-factor (NH2-YIIKGVFWDPAC[S-farnesyl]-COOCH3) and several Cys-12 analogs to determine the significance of S-farnesylation and carboxy-terminal methyl esterification to the biological activity of this lipopeptide mating pheromone. Replacement of either the farnesyl group or the carboxy-terminal methyl ester by a hydrogen atom resulted in marked reduction but not total loss of bioactivity as measured by a variety of assays. Moreover, both the farnesyl and methyl ester groups could be replaced by other substituents to produce biologically active analogs. The bioactivity of a-factor decreased as the number of prenyl units on the cysteine sulfur decreased from three to one, and an a-factor analog having the S-farnesyl group replaced by an S-hexadecanyl group was more active than an S-methyl a-factor analog. Thus, with two types of modifications, a-factor activity increased as the S-alkyl group became bulkier and more hydrophobic. MATa cells having deletions of the a-factor structural genes (mfal1 mfa2 mutants) were capable of mating with either sst2 or wild-type MAT alpha cells in the presence of exogenous a-factor, indicating that it is not absolutely essential for MATa cells to actively produce a-factor in order to mate. Various a-factor analogs were found to partially restore mating to these strains as well, and their relative activities in the mating restoration assay were similar to their activities in the other assays used in this study. Mating was not restored by addition of exogenous a-factor to a cross of a wild-type MAT alpha strain and a MATaste6 mutant, indicating a role of the STE6 gene product in mating in addition to its secretion of a-factor.


1991 ◽  
Vol 11 (7) ◽  
pp. 3603-3612 ◽  
Author(s):  
S Marcus ◽  
G A Caldwell ◽  
D Miller ◽  
C B Xue ◽  
F Naider ◽  
...  

We have undertaken total synthesis of the Saccharomyces cerevisiae a-factor (NH2-YIIKGVFWDPAC[S-farnesyl]-COOCH3) and several Cys-12 analogs to determine the significance of S-farnesylation and carboxy-terminal methyl esterification to the biological activity of this lipopeptide mating pheromone. Replacement of either the farnesyl group or the carboxy-terminal methyl ester by a hydrogen atom resulted in marked reduction but not total loss of bioactivity as measured by a variety of assays. Moreover, both the farnesyl and methyl ester groups could be replaced by other substituents to produce biologically active analogs. The bioactivity of a-factor decreased as the number of prenyl units on the cysteine sulfur decreased from three to one, and an a-factor analog having the S-farnesyl group replaced by an S-hexadecanyl group was more active than an S-methyl a-factor analog. Thus, with two types of modifications, a-factor activity increased as the S-alkyl group became bulkier and more hydrophobic. MATa cells having deletions of the a-factor structural genes (mfal1 mfa2 mutants) were capable of mating with either sst2 or wild-type MAT alpha cells in the presence of exogenous a-factor, indicating that it is not absolutely essential for MATa cells to actively produce a-factor in order to mate. Various a-factor analogs were found to partially restore mating to these strains as well, and their relative activities in the mating restoration assay were similar to their activities in the other assays used in this study. Mating was not restored by addition of exogenous a-factor to a cross of a wild-type MAT alpha strain and a MATaste6 mutant, indicating a role of the STE6 gene product in mating in addition to its secretion of a-factor.


1992 ◽  
Vol 283 (1) ◽  
pp. 91-98 ◽  
Author(s):  
J A Feild ◽  
R H Reid ◽  
D J Rieman ◽  
T P Kline ◽  
G Sathe ◽  
...  

Site-directed mutants of transforming growth factor-alpha (TGF-alpha) were expressed in an Escherichia coli outer membrane protein A (ompA) expression/secretion vector under the transcriptional control of the lambda PL promoter. TGF-alpha mutant proteins were isolated from cell pellets using alkaline extraction with 0.1 M-Tris (pH 10.5). The levels of protein expression of 23 TGF-alpha mutants were comparable with those of wild-type TGF-alpha, as determined by immunoblotting and radioimmunoassay. An analysis of biological activity using as assays radioreceptor binding competition and colony formation in soft agar showed that the following mutations destroy the activity of TGF-alpha: Gly-19 to Val, Val-33 to Pro and Gly-40 to Val. Mutations of Arg-42 to Lys, Leu-48 to Ala, Tyr-38 to Trp or Phe-17 to Tyr significantly decrease, but do not destroy, biological activity when compared with the wild-type. Mutations in 14 other residues did not significantly alter receptor binding or colony-forming activity. These studies suggest that two domains localized at the surface of TGF-alpha are important in receptor binding and colony-forming activity. Domain I involves amino acid residues which include Tyr-38 and Leu-48; domain II includes residues Phe-15, Phe-17 and Arg-42.


Blood ◽  
2006 ◽  
Vol 109 (5) ◽  
pp. 2205-2209 ◽  
Author(s):  
Ivana De Domenico ◽  
Diane McVey Ward ◽  
Giovanni Musci ◽  
Jerry Kaplan

Abstract Ferroportin (Fpn) (IREG1, SLC40A1, MTP1) is an iron transporter, and mutations in Fpn result in a genetically dominant form of iron overload disease. Previously, we demonstrated that Fpn is a multimer and that mutations in Fpn are dominant negative. Other studies have suggested that Fpn is not a multimer and that overexpression or epitope tags might affect the localization, topology, or multimerization of Fpn. We generated wild-type Fpn with 3 different epitopes, GFP, FLAG, and c-myc, and expressed these constructs in cultured cells. Co-expression of any 2 different epitope-tagged proteins in the same cell resulted in their quantitative coimmunoprecipitation. Treatment of Fpn-GFP/Fpn-FLAG–expressing cells with crosslinking reagents resulted in the crosslinking of Fpn-GFP and Fpn-FLAG. Western analysis of rat glioma C6 cells or mouse bone marrow macrophages exposed to crosslinking reagents showed that endogenous Fpn is a dimer. These results support the hypothesis that the dominant inheritance of Fpn–iron overload disease is due to the dominant-negative effects of mutant Fpn proteins.


2000 ◽  
Vol 279 (1) ◽  
pp. E116-E123 ◽  
Author(s):  
S. Dridi ◽  
N. Raver ◽  
E. E. Gussakovsky ◽  
M. Derouet ◽  
M. Picard ◽  
...  

The chicken leptin sequence, in contrast to mammalian leptins, contains an unpaired Cys at position 3 of the original cDNA ( AF012727 ). The presence of an extra Cys may confer a different structure and affect the leptin's biological activity. To address this, we studied the effects of wild-type and mutated (C4S) chicken leptins in vitro and in vivo and compared them with mammalian leptin prepared from ovine leptin cDNA. The prokaryotic expression vector pMON, encoding full-size A(−1) chicken leptin ( AF012727 ), was mutated using a mutagenesis kit, yielding the C4S analog. Escherichia coli cells transformed with this vector overexpressed large amounts of chicken leptin C4S upon induction with nalidixic acid. The expressed protein, found in the inclusion bodies, was refolded and purified to homogeneity on a Q-Sepharose column, yielding three electrophoretically pure fractions, eluted from the column by 100, 125, and 150 mM NaCl, respectively. All three fractions showed a single band of the expected molecular mass (16 kDa) and were composed of >95% monomeric protein. Proper refolding was evidenced by comparing the circular dichroism spectrum of the analog with spectra of nonmutated chicken and ovine leptins. The biological activity of the C4S analog was evidenced by its ability to stimulate proliferation of leptin-sensitive BAF/3 cells transfected with a long form of human leptin receptor construct similar to its nonmutated counterpart, indicating that Cys4 plays no role in leptin activity. The in vitro activity of both wild-type and mutated chicken leptins was ∼10-fold lower than that of ovine leptin. After intravenous or intraperitoneal injections, C4S analog and the nonmutated chicken and ovine leptins all lowered the food intake of starved 9-day-old broiler or 5-wk-old layer male chickens by 11–34%. Monitoring food behavior revealed that the attenuated food intake resulted not from a decreased number of approaches to the feeders but from a decrease in the average time spent eating during each approach.


1988 ◽  
Vol 8 (3) ◽  
pp. 1011-1018 ◽  
Author(s):  
M K Sauer ◽  
D J Donoghue

The protein encoded by v-sis, the oncogene of simian sarcoma virus, is homologous to the B chain of platelet-derived growth factor (PDGF). There are eight conserved Cys residues between PDGF-B and the v-sis protein. Both native PDGF and the v-sis protein occur as disulfide-bonded dimers, probably containing both intramolecular and intermolecular disulfide bonds. Oligonucleotide-directed mutagenesis was used to change the Cys codons to Ser codons in the v-sis gene. Four single mutants lacked detectable biological activity, indicating that Cys-127, Cys-160, Cys-171, and Cys-208 are required for formation of a biologically active v-sis protein. The other four single mutants retained biological activity as determined in transformation assays, indicating that Cys-154, Cys-163, Cys-164, and Cys-210 are dispensable for biological activity. Double and triple mutants containing three of these altered sites were constructed, some of which were transforming as well. The v-sis proteins encoded by biologically active mutants displayed significantly reduced levels of dimeric protein compared with the wild-type v-sis protein, which dimerized very efficiently. Furthermore, a mutant with a termination codon at residue 209 exhibited partial transforming activity. This study thus suggests that the minimal region required for transformation consists of residues 127 to 208. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis indicated that the v-sis proteins encoded by some of the biologically active mutants exhibited an altered conformation when compared with the wild-type v-sis protein, and suggested that Cys-154 and Cys-163 participate in a nonessential disulfide bond.


2021 ◽  
Author(s):  
Loai Ali Al Mortada Al Wasify ◽  
Shaikha Said Al Mamari ◽  
Mohammed Nasser Al Tobi

Background: Prolactin (PRL) hormone circulates in the blood in three forms, mono-prolactin which constitutes 85 % of prolactin in healthy and hyperprolactinemia conditions, a dimeric prolactin (big PRL) and polymeric PRL (big-big prolactin or Macroprolactin). Macroprolactin in normal conditions is not exceeding 2% of the total serum prolactin and had no biological activity. In some cases, of hyperprolactinemia the dominant form becomes MaPRL and exceeding the 2% percentage of total leading to misdiagnosis of hyperprolactinemia and un-necessary radiological investigations. The aim of this study is to detect the prevalence of MaPRL in Psychiatric patients with hyperprolactinemia due to anti-psychotic medications at Al Masarra hospital. Material and methods: The study was conducted on 190 samples from patients with high prolactin in Al Masarra Hospital either inpatients or out-patient clinics either male or non-lactating not pregnant female. The measurement of Prolactin level was measured by the automated analyser COBAS e411, Roche Diagnostic. Macroprolactin was precipitated by using Polyethylene glycol (PEG). Results: Prevalence of Macroprolactin was 10.5 % of hyperprolactinemic patients receiving antipsychotics. There was a statistically significant difference in gender between the symptomatic and asymptomatic group. There was no significant difference in medications used between the symptomatic and asymptomatic group and there was a statistically significant difference in total Prolactin & Macroprolactin between males and females. Conclusions: Investigation for Macroprolactin should be done in every hyperprolactinemia patient who is receiving antipsychotics more especially the asymptomatic cases to avoid unnecessary radiological imaging and treatment.


1988 ◽  
Vol 8 (3) ◽  
pp. 1011-1018
Author(s):  
M K Sauer ◽  
D J Donoghue

The protein encoded by v-sis, the oncogene of simian sarcoma virus, is homologous to the B chain of platelet-derived growth factor (PDGF). There are eight conserved Cys residues between PDGF-B and the v-sis protein. Both native PDGF and the v-sis protein occur as disulfide-bonded dimers, probably containing both intramolecular and intermolecular disulfide bonds. Oligonucleotide-directed mutagenesis was used to change the Cys codons to Ser codons in the v-sis gene. Four single mutants lacked detectable biological activity, indicating that Cys-127, Cys-160, Cys-171, and Cys-208 are required for formation of a biologically active v-sis protein. The other four single mutants retained biological activity as determined in transformation assays, indicating that Cys-154, Cys-163, Cys-164, and Cys-210 are dispensable for biological activity. Double and triple mutants containing three of these altered sites were constructed, some of which were transforming as well. The v-sis proteins encoded by biologically active mutants displayed significantly reduced levels of dimeric protein compared with the wild-type v-sis protein, which dimerized very efficiently. Furthermore, a mutant with a termination codon at residue 209 exhibited partial transforming activity. This study thus suggests that the minimal region required for transformation consists of residues 127 to 208. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis indicated that the v-sis proteins encoded by some of the biologically active mutants exhibited an altered conformation when compared with the wild-type v-sis protein, and suggested that Cys-154 and Cys-163 participate in a nonessential disulfide bond.


1993 ◽  
Vol 121 (3) ◽  
pp. 705-713 ◽  
Author(s):  
P Bellosta ◽  
D Talarico ◽  
D Rogers ◽  
C Basilico

The K-FGF/HST (FGF-4) growth factor is a member of the FGF family which is efficiently secreted and contains a single N-linked glycosylation signal. To study the role of glycosylation in the secretion of K-FGF, we mutated the human K-fgf cDNA to eliminate the glycosylation signal and the mutated cDNA was cloned into a mammalian expression vector. Studies of immunoprecipitation from the conditioned medium of cells expressing this plasmid revealed that the lack of glycosylation did not impair secretion, however the unglycosylated protein was immediately cleaved into two NH2-terminally truncated peptides of 13 and 15 kD, which appeared to be more biologically active than the wild-type protein. These two proteins also showed higher heparin binding affinity than that of wt K-FGF. We have expressed in bacteria the larger of these two proteins (K140), in which the NH2-terminal 36 amino acids present in the mature form of K-FGF have been deleted. Mitogenicity assays on several cell lines showed that purified recombinant K140 had approximately five times higher biological activity than wild-type recombinant K-FGF. Studies of receptor binding showed that K140 had higher affinity than wt K-FGF for two of the four members of FGF receptor's family, specifically for FGFR-1 (flg) and FGFR-2 (bek). K140 also had increased heparin binding ability, but this property does not appear to be responsible for the increased affinity for FGF receptors. Thus removal of the NH2-terminal 36 amino acids from the mature K-FGF produces growth factor molecules with an altered conformation, resulting in higher heparin affinity, and more efficient binding to FGF receptors. Although it is not clear whether cleavage of K-FGF to generate K140 occurs in vivo, this could represent a novel mechanism of modulation of growth factor activity.


Sign in / Sign up

Export Citation Format

Share Document