Call count responses of North Island brown kiwi to different levels of predator control in Northland, New Zealand

2003 ◽  
Vol 109 (2) ◽  
pp. 175-180 ◽  
Author(s):  
R.J Pierce ◽  
I.M Westbrooke
2021 ◽  
pp. 1-16
Author(s):  
Sarah Hendrica Bickerton ◽  
Karl Löfgren

Public engagement is a gendered experience, whether offline or online, something which is reflected in women’s experiences of social media. In this article, we seek to systematically explore the experiences from politically engaged women twitter users in New Zealand in order to draw some lessons, through a thematic and interpretative analytical approach, at four different strategic levels on how to deflect intimidating and aggressive behaviour. We conclude that understanding strategically how structural social locations like gender effect the ability to contribute to political participation and engagement, if addressed, can produce more inclusive and productive online political and policy spaces. Further, this strategic approach involves connecting together different levels of response to online negativity such as platform tools, space-curation, and monitoring, having these made coherent with each other, as well as with this strategic understanding of how structural social location plays into access and use of online political and policy spaces.


2021 ◽  
Author(s):  
Leighton M Watson

Aim: The August 2021 COVID-19 outbreak in Auckland has caused the New Zealand government to transition from an elimination strategy to suppression, which relies heavily on high vaccination rates in the population. As restrictions are eased and as COVID-19 leaks through the Auckland boundary, there is a need to understand how different levels of vaccination will impact the initial stages of COVID-19 outbreaks that are seeded around the country. Method: A stochastic branching process model is used to simulate the initial spread of a COVID-19 outbreak for different vaccination rates. Results: High vaccination rates are effective at minimizing the number of infections and hospitalizations. Increasing vaccination rates from 20% (approximate value at the start of the August 2021 outbreak) to 80% (approximate proposed target) of the total population can reduce the median number of infections that occur within the first four weeks of an outbreak from 1011 to 14 (25th and 75th quantiles of 545-1602 and 2-32 for V=20% and V=80%, respectively). As the vaccination rate increases, the number of breakthrough infections (infections in fully vaccinated individuals) and hospitalizations of vaccinated individuals increases. Unvaccinated individuals, however, are 3.3x more likely to be infected with COVID-19 and 25x more likely to be hospitalized. Conclusion: This work demonstrates the importance of vaccination in protecting individuals from COVID-19, preventing high caseloads, and minimizing the number of hospitalizations and hence limiting the pressure on the healthcare system.


2021 ◽  
Author(s):  
◽  
Cherie Balls

<p>Introduced mammalian predators are one of the largest conservation threats to New Zealand native flora and fauna, and there is an increasing concern about their presence in urban environments, coupled with a recognition that cities present a unique opportunity for ecological restoration, due to the availability of a large number of volunteers and options for intensive management of green spaces and gardens. Predator control is an essential step towards the ecological restoration of urban environments, however, it requires an understanding of the factors influencing the distribution of these mammalian predators before successful control operations can be implemented. Few studies have investigated mammalian predators in urban environments, and there is little certainty about what drives their distribution in these environments. This thesis used simple mammal monitoring techniques and trapping data to investigate the distribution of mammalian predators within broad scale urban environments, with the aim of identifying drivers of their distribution.  Chew cards and tracking tunnels collected across three New Zealand cities were assessed for their efficacy as accurate monitoring devices in urban environments. In Chapter 2, monitoring devices were cross-checked between observers to assess the level of consistency in interpretation of chew and tracking marks. The consistency of chew card and tracking tunnel identifications was relatively high overall and were not substantially influenced by the city of identification, or the duration of card exposures. Monitoring devices were also assessed for their change in sensitivity between one and six-night exposures. Both devices were effective at detecting rats, however, tracking tunnels showed greater sensitivity and consistency in detecting mice and hedgehogs, whereas chew cards were better suited to the monitoring of possums. Neither device was particularly effective at detecting mustelids or cats.  In Chapter 3, mammalian predators were monitored across 24 monitoring lines in autumn, 2018, and results were compiled with spring 2017 and autumn 2018 data, pre-collected in two other cities, following the same procedures. There were distinct differences in the broad-scale habitat utilisation of rats, mice, hedgehogs, with possums being the only species to show a strong preference for urban forests. Only two of the tested microhabitat variables had an influence on species distributions. Detection of rats declined with increasing distance to the coast, and the increase in human population size was related to a significant increase in hedgehogs. There was a strong seasonal difference on the influence of local trap density and the detection of mammals. The increase in trap density within 25-50m radii was significantly related to a decrease in rat and hedgehog detections. Overall, there are substantial differences between the distributions of species in an urban environment.  Trapping is one of the main methods of predator control in New Zealand, and is already widespread within urban and suburban Wellington. In Chapter 4, I compiled trap data from 22 community trapping groups operating in residential and reserve areas in Wellington City. Residential groups (“backyard trappers”) used a high proportion of Victor and various rat and mouse traps, which was strongly linked to their high number of rat and mouse catches. Groups trapping in reserves used a high proportion of DOC 200, Victor and A24 traps, however, fewer hedgehogs were caught compared to residential areas. Catches were significantly influenced by various landscape variables. An increased distance of traps to streams led to significantly higher catches of rats, conversely, proximity to streams resulted in significantly higher catches of mice and hedgehogs. Although few catches of weasels were reported, traps closer to the coast and to forest fragments caught significantly more individuals.  The research in this thesis contributes to the small body of research conducted on mammalian predators within urban environments. The findings in this thesis can assist with the current and future predator management programmes, by highlighting areas of potential significance, particularly in Wellington.</p>


2021 ◽  
Vol 91 (9) ◽  
pp. 945-968
Author(s):  
Karen E. Higgs ◽  
Stuart Munday ◽  
Anne Forbes ◽  
Karsten F. Kroeger

ABSTRACT Paleocene sandstones in the Kupe Field of Taranaki Basin, New Zealand, are subdivided into two diagenetic zones, an upper kaolinite–siderite (K-S) zone and a lower chlorite–smectite (Ch-Sm) zone. Petrographic observations show that the K-S zone has formed from diagenetic alteration of earlier-formed Ch-Sm sandstones, whereby biotite and chlorite–smectite have been altered to form kaolinite and siderite, and plagioclase has reacted to form kaolinite and quartz. These diagenetic zones can be difficult to discriminate from downhole bulk-rock geochemistry, which is largely due to a change in element-mineral affinities without a wholesale change in element abundance. However, some elements have proven useful for delimiting the diagenetic zones, particularly Ca and Na, where much lower abundances in the K-S zone are interpreted to represent removal of labile elements during diagenesis. Multivariate analysis has also proven an effective method of distinguishing the diagenetic zones by highlighting elemental affinities that are interpreted to represent the principal diagenetic phases. These include Fe-Mg-Mn (siderite) in the K-S zone, and Ca-Mn (calcite) and Fe-Mg-Ti-Y-Sc-V (biotite and chlorite–smectite) in the Ch-Sm zone. Results from this study demonstrate that the base of the K-S zone approximately corresponds to the base of the current hydrocarbon column. An assessment with 1D basin models and published stable-isotope data show that K-S diagenesis is likely to have occurred during deep-burial diagenesis in the last 4 Myr. Modeling predicts that CO2-rich fluids were generating from thermal decarboxylation of intraformational Paleocene coals at this time, and accumulation of high partial pressures of intraformational CO2 in the hydrocarbon column is considered a viable catalyst for the diagenetic reactions. Variable CO2 concentrations and residence times are interpreted to be the reason for different levels of K-S diagenesis, which is supported by a clear relationship between the presence or absence of a well-developed K-S zone and the present-day reservoir-corrected CO2 content.


Author(s):  
Rachelle N Binny ◽  
Shaun C Hendy ◽  
Alex James ◽  
Audrey Lustig ◽  
Michael J Plank ◽  
...  

On 25th March 2020, New Zealand implemented stringent lockdown measures (Alert Level 4, in a four-level alert system) with the goal of eliminating community transmission of COVID-19. Once new cases are no longer detected over consecutive days, the probability of elimination is an important measure for informing decisions on when certain COVID-19 restrictions should be relaxed. Our model of COVID-19 spread in New Zealand estimates that after 2-3 weeks of no new reported cases, there is a 95% probability that COVID-19 has been eliminated. We assessed the sensitivity of this estimate to varying model parameters, in particular to different likelihoods of detection of clinical cases and different levels of control effectiveness. Under an optimistic scenario with high detection of clinical cases, a 95% probability of elimination is achieved after 10 consecutive days with no new reported cases, while under a more pessimistic scenario with low case detection it is achieved after 22 days.


2021 ◽  
Vol 30 (4) ◽  
pp. 461-466
Author(s):  
CM King

Stoats (Mustela erminea) are active hunters and, therefore, one might predict that any broken bones or other injuries impeding active movement would incur a serious risk of starvation. Dead stoats (n = 560) were collected from trappers operating predator control lines in three conservation areas of New Zealand from 1972–1978. Femurs were cleaned and examined for healed injuries and deformities. Five femurs from four stoats (one with both femurs injured) showed traumatic distortions following healing of complete breaks incurred during life. A further case recorded during post-eradication monitoring in 2010 on Rangitoto, an offshore island, is added. These data provide evidence that wild stoats have a remarkable capacity to tolerate catastrophic femur fractures. They can survive long enough, despite the implied limitation to their energetic hunting style, to permit full healing even though the result is a gross distortion of the femoral shaft.


2002 ◽  
Vol 29 (6) ◽  
pp. 627 ◽  
Author(s):  
Ben Reddiex ◽  
Graham J. Hickling ◽  
Grant L. Norbury ◽  
Chris M. Frampton

The impact of predation and rabbit haemorrhagic disease (RHD) on population dynamics of rabbits, and the survival of juvenile rabbits, was investigated between July 1999 and March 2000 in North Canterbury, New Zealand. Rabbit abundance and pre- and post-emergent rabbit mortality were monitored on four sites, two of which were subject to predator control. RHD spread naturally through all sites from late November to early December. Rabbit densities declined on all sites, but after the RHD epidemic, declines were significantly greater where populations of predators had not been controlled. Survival of rabbit nestlings was lower where predators were not controlled. All post-emergent radio-collared rabbits died at sites where predators were not controlled, whereas 18% of those collared at sites where predators were controlled survived to maturity. In contrast to the results from previous studies, rabbits born at the start of the breeding season had very high rates of post-emergent mortality, as they appeared to be susceptible to the RHD virus later in the breeding season. The age at which juvenile rabbits become susceptible to RHD, the timing of RHD epidemics, and the abundance of predators are likely to be important in determining survival of juvenile rabbits. This study demonstrates that predation can reduce rabbit populations to low levels, but only in combination with other factors, in this case RHD.


Sign in / Sign up

Export Citation Format

Share Document