scholarly journals Effect of Self-Association on the Structural Organization of Partially Folded Proteins: Inactivated Actin

1999 ◽  
Vol 77 (5) ◽  
pp. 2788-2800 ◽  
Author(s):  
Irina M. Kuznetsova ◽  
Alexander G. Biktashev ◽  
Sofia Yu. Khaitlina ◽  
Konstantin S. Vassilenko ◽  
Konstantin K. Turoverov ◽  
...  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Artem Bonchuk ◽  
Sofia Kamalyan ◽  
Sofia Mariasina ◽  
Konstantin Boyko ◽  
Vladimir Popov ◽  
...  

Author(s):  
G. Stöffler ◽  
R.W. Bald ◽  
J. Dieckhoff ◽  
H. Eckhard ◽  
R. Lührmann ◽  
...  

A central step towards an understanding of the structure and function of the Escherichia coli ribosome, a large multicomponent assembly, is the elucidation of the spatial arrangement of its 54 proteins and its three rRNA molecules. The structural organization of ribosomal components has been investigated by a number of experimental approaches. Specific antibodies directed against each of the 54 ribosomal proteins of Escherichia coli have been performed to examine antibody-subunit complexes by electron microscopy. The position of the bound antibody, specific for a particular protein, can be determined; it indicates the location of the corresponding protein on the ribosomal surface.The three-dimensional distribution of each of the 21 small subunit proteins on the ribosomal surface has been determined by immuno electron microscopy: the 21 proteins have been found exposed with altogether 43 antibody binding sites. Each one of 12 proteins showed antibody binding at remote positions on the subunit surface, indicating highly extended conformations of the proteins concerned within the 30S ribosomal subunit; the remaining proteins are, however, not necessarily globular in shape (Fig. 1).


Author(s):  
James A. Lake

The understanding of ribosome structure has advanced considerably in the last several years. Biochemists have characterized the constituent proteins and rRNA's of ribosomes. Complete sequences have been determined for some ribosomal proteins and specific antibodies have been prepared against all E. coli small subunit proteins. In addition, a number of naturally occuring systems of three dimensional ribosome crystals which are suitable for structural studies have been observed in eukaryotes. Although the crystals are, in general, too small for X-ray diffraction, their size is ideal for electron microscopy.


Author(s):  
U. Aebi ◽  
P. Rew ◽  
T.-T. Sun

Various types of intermediate-sized (10-nm) filaments have been found and described in many different cell types during the past few years. Despite the differences in the chemical composition among the different types of filaments, they all yield common structural features: they are usually up to several microns long and have a diameter of 7 to 10 nm; there is evidence that they are made of several 2 to 3.5 nm wide protofilaments which are helically wound around each other; the secondary structure of the polypeptides constituting the filaments is rich in ∞-helix. However a detailed description of their structural organization is lacking to date.


1996 ◽  
Vol 75 (02) ◽  
pp. 326-331 ◽  
Author(s):  
Unni Haddeland ◽  
Knut Sletten ◽  
Anne Bennick ◽  
Willem Nieuwenhuizen ◽  
Frank Brosstad

SummaryThe present paper shows that conformationally changed fibrinogen can expose the sites Aα-(148-160) and γ-(312-324) involved in stimulation of the tissue-type plasminogen activator (t-PA)-catalysed plasminogen activation. The exposure of the stimulating sites was determined by ELISA using mABs directed to these sites, and was shown to coincide with stimulation of t-PA-catalysed plasminogen activation as assessed in an assay using a chromogenic substrate for plasmin. Gel permeation chromatography of fibrinogen conformationally changed by heat (46.5° C for 25 min) demonstrated the presence of both aggregated and monomeric fibrinogen. The aggregated fibrinogen, but not the monomeric fibrinogen, had exposed the epitopes Aα-(148-160) and γ-(312-324) involved in t-PA-stimulation. Fibrinogen subjected to heat in the presence of 3 mM of the tetrapeptide GPRP neither aggregates nor exposes the rate-enhancing sites. Thus, aggregation and exposure of t-PA-stimulating sites in fibrinogen seem to be related phenomena, and it is tempting to believe that the exposure of stimulating sites is a consequence of the conformational changes that occur during aggregation, or self-association. Fibrin monomers kept in a monomeric state by a final GPRP concentration of 3 mM do not expose the epitopes Aα-(148-160) and γ-(312-324) involved in t-PA-stimulation, whereas dilution of GPRP to a concentration that is no longer anti-polymerizing, results in exposure of these sites. Consequently, the exposure of t-PA-stimulating sites in fibrin as well is due to the conformational changes that occur during selfassociation.


1973 ◽  
Vol 74 (Suppl) ◽  
pp. S130-S167 ◽  
Author(s):  
O. P. Samarina ◽  
E. M. Lukanidin ◽  
G. P. Georgiev

ABSTRACT This paper is a review of the data concerning the nature, structural organization, properties and biological significance of the particles, containing mRNA and pre-mRNA (precursor of mRNA), i. e., (1) nuclear pre-mRNA-containing particles (2) free cytoplasmic mRNP (ribonucleoproteins), or informosomes (3) polysome-bound mRNP. Some new data on the comparison of nuclear and cytoplasmic particles, the nature of poly A-containing structures, involvement of informofers in Adenovirusspecific RNA transfer are presented. The general scheme of mRNA transport from nucleus to cytoplasm is discussed.


Diabetes ◽  
1987 ◽  
Vol 36 (3) ◽  
pp. 261-264 ◽  
Author(s):  
E. Helmerhorst ◽  
G. B. Stokes

2016 ◽  
Vol 12 (1) ◽  
pp. 4178-4187
Author(s):  
Michael A Persinger ◽  
Stanley A Koren

                The capacity for computer-like simulations to be generated by massive information processing from electron-spin potentials supports Bostrom’s hypothesis that matter and human cognition might reflect simulations. Quantitative analyses of the basic assumptions indicate the universe may display properties of a simulation where photons behave as pixels and gravitons control the structural organization. The Lorentz solution for the square of the light and entanglement velocities converges with the duration of a single electron orbit that ultimately defines properties of matter. The approximately one trillion potential states within the same space with respect to the final epoch of the universe indicate that a different simulation, each with intrinsic properties, has been and will be generated as a type of tractrix defined by ±2 to 3 days (total duration 5 to 6 days). It may define the causal limits within a simulation. Because of the intrinsic role of photons as the pixel unit, phenomena within which flux densities are enhanced, such as human cognition (particularly dreaming) and the cerebral regions associated with those functions, create the conditions for entanglement or excess correlations between contiguous simulations. The consistent quantitative convergence of operations indicates potential validity for this approach. The emergent solutions offer alternative explanations for the limits of predictions for multivariate phenomena that could be coupled to more distal simulations.


Sign in / Sign up

Export Citation Format

Share Document