Strength and pore structure of ternary blended cement mortars containing blast furnace slag and silica fume

1998 ◽  
Vol 28 (7) ◽  
pp. 1011-1022 ◽  
Author(s):  
L. Bágel
2002 ◽  
Vol 17 (2) ◽  
pp. 62-65 ◽  
Author(s):  
Li Dong-xu ◽  
Chen Lin ◽  
Xu Zhong-zi ◽  
Luo Zhi-min

2017 ◽  
Vol 865 ◽  
pp. 282-288 ◽  
Author(s):  
Jul Endawati ◽  
Rochaeti ◽  
R. Utami

In recent years, sustainability and environmental effect of concrete became the main concern. Substituting cement with the other cementitious material without decreasing mechanical properties of a mixture could save energy, reduce greenhouse effect due to mining, calcination and limestone refining. Therefore, some industrial by-products such as fly ash, silica fume, and Ground Iron Blast Furnace Slag (GIBFS) would be used in this study to substitute cement and aggregate. This substitution would be applied on the porous concrete mixture to minimize the environmental effect. Slag performance will be optimized by trying out variations of fly ash, silica fume, and slag as cement substitution material in mortar mixture. The result is narrowed into two types of substitution. First, reviewed from the fly ash substitution effect on binder material, highest compressive strength 16.2 MPa was obtained from mixture composition 6% fly ash, 3% silica fume and 17% grinding granular blast-furnace slag. Second, reviewed from slag types as cement substitution and silica fume substitution, highest compressive strength 15.2 MPa was obtained from mortar specimens with air-cooled blast furnace slag. It composed with binder material 56% Portland composite cement, 15% fly ash, 3% silica fume and 26% air-cooled blast furnace slag. Considering the cement substitution, the latter mixture was chosen.


2019 ◽  
Vol 278 ◽  
pp. 01007
Author(s):  
Chao Yang ◽  
Shuguang Wang ◽  
Feng Xu ◽  
Weiwei Li ◽  
Dongsheng Du

Blast furnace slag blended concrete is widely used in infrastructure, and its chloride resistance is of great concern. This paper experimentally investigated the capillary pore structure and chloride resistance of blast furnace slag blended concrete. Blast furnace slag was proved to be able to optimize the critical pore radius and decrease the proportion of detrimental capillary pores (with radius between 50 nm and 10,000 nm). Meanwhile, the benefit of BFS in improving the chloride resistance was proved. Finally, regression analysis showed that the rapid migration coefficient is proportional to the critical pore radius and the detrimental capillary pore proportion. Nevertheless, the rapid migration coefficient is not closely related to the capillary porosity.


Sign in / Sign up

Export Citation Format

Share Document