Analysis and HPLC fractionation of urine from patients with cystic fibrosis, chronic lung diseases and normal controls

1989 ◽  
Vol 22 (5) ◽  
pp. 377-383 ◽  
Author(s):  
Terese M. Guman-Wignot ◽  
Jay Kaufman ◽  
Douglas S. Holsclaw ◽  
Irvin R. Schmoyer ◽  
Jack Alhadeff
2016 ◽  
Vol 90 (9) ◽  
pp. 4258-4261 ◽  
Author(s):  
Matthew R. Hendricks ◽  
Jennifer M. Bomberger

Respiratory virus infections are common but generally self-limiting infections in healthy individuals. Although early clinical studies reported low detection rates, the development of molecular diagnostic techniques by PCR has led to an increased recognition that respiratory virus infections are associated with morbidity and acute exacerbations of chronic lung diseases, such as cystic fibrosis (CF). The airway epithelium is the first barrier encountered by respiratory viruses following inhalation and the primary site of respiratory viral replication. Here, we describe how the airway epithelial response to respiratory viral infections contributes to disease progression in patients with CF and other chronic lung diseases, including the role respiratory viral infections play in bacterial acquisition in the CF patient lung.


2014 ◽  
Vol 11 (Supplement 3) ◽  
pp. S161-S168 ◽  
Author(s):  
Jessica E. Pittman ◽  
Garry Cutting ◽  
Stephanie D. Davis ◽  
Thomas Ferkol ◽  
Richard Boucher

2020 ◽  
Vol 46 (1) ◽  
Author(s):  
Valentino Bezzerri ◽  
Francesca Lucca ◽  
Sonia Volpi ◽  
Marco Cipolli

Abstract The Veneto region is one of the most affected Italian regions by COVID-19. Chronic lung diseases, such as chronic obstructive pulmonary disease (COPD), may constitute a risk factor in COVID-19. Moreover, respiratory viruses were generally associated with severe pulmonary impairment in cystic fibrosis (CF). We would have therefore expected numerous cases of severe COVID-19 among the CF population. Surprisingly, we found that CF patients were significantly protected against infection by SARS-CoV-2. We discussed this aspect formulating some reasonable theories.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Olga L. Voronina ◽  
Marina S. Kunda ◽  
Natalia N. Ryzhova ◽  
Ekaterina I. Aksenova ◽  
Andrey N. Semenov ◽  
...  

Background and Aim. The order Burkholderiales became more abundant in the healthcare units since the late 1970s; it is especially dangerous for intensive care unit patients and patients with chronic lung diseases. The goal of this investigation was to reveal the real variability of the order Burkholderiales representatives and to estimate their phylogenetic relationships.Methods.16S rDNAand genes of theBurkholderia cenocepaciacomplex (Bcc) Multi Locus Sequence Typing (MLST) scheme were used for the bacteria detection.Results. A huge diversity of genome size and organization was revealed in the order Burkholderiales that may prove the adaptability of this taxon’s representatives. The following variability of the Burkholderiales in Russian healthcare units has been revealed: Burkholderiaceae (Burkholderia,Pandoraea, andLautropia), Alcaligenaceae (Achromobacter), and Comamonadaceae (Variovorax). TheBurkholderiagenus was the most diverse and was represented by 5 species and 16 sequence types (ST). ST709 and 728 were transmissible and often encountered in cystic fibrosis patients and in hospitals.A. xylosoxidanswas estimated by 15 genotypes. The strains of first and second ones were the most numerous.Conclusions. Phylogenetic position of the genusLautropiawith smaller genome is ambiguous. The Bcc MLST scheme is applicable for all Burkholderiales representatives for resolving the epidemiological problems.


2007 ◽  
Vol 292 (1) ◽  
pp. L343-L352 ◽  
Author(s):  
Hannah Blau ◽  
Keren Klein ◽  
Itamar Shalit ◽  
Drora Halperin ◽  
Ina Fabian

Cystic fibrosis (CF) is associated with severe neutrophilic airway inflammation. We showed that moxifloxacin (MXF) inhibits IL-8 and MAPK activation in monocytic and respiratory epithelial cells. Azithromycin (AZM) and ciprofloxacin (CIP) are used clinically in CF. Thus we now examined effects of MXF, CIP, and AZM directly on CF cells. IB3, a CF bronchial cell line, and corrected C38 cells were treated with TNF-α, IL-1β, or LPS with or without 5–50 μg/ml MXF, CIP, or AZM. IL-6 and IL-8 secretion (ELISA), MAPKs ERK1/2, JNK, p38, and p65 NF-κB (Western blot) activation were measured. Baseline IL-6 was sixfold higher in IB3 than C38 cells but IL-8 was similar. TNF-α and IL-1β increased IL-6 and IL-8 12- to 67-fold with higher levels in IB3 than C38 cells post-TNF-α ( P < 0.05). Levels were unchanged following LPS. Baseline phosphorylated form of ERK1/2 (p-ERK1/2), JNK, and NF-κB p65 were higher in IB3 than C38 cells (5-, 1.4-, and 1.4-fold), and following TNF-α increased, as did the p-p38, by 1.6- to 2-fold. MXF (5–50 μg/ml) and CIP (50 μg/ml), but not AZM, suppressed IL-6 and IL-8 secretion by up to 69%. MXF inhibited TNF-α-stimulated MAPKs ERK1/2, 46-kDa JNK, and NF-κB up to 60%, 40%, and 40%, respectively. In contrast, MXF did not inhibit p38 activation, implying a highly selective pretranslational effect. In conclusion, TNF-α and IL-1β induce an exaggerated inflammatory response in CF airway cells, inhibited by MXF more than by CIP or AZM. Clinical trials are recommended to assess efficacy in CF and other chronic lung diseases.


2021 ◽  
Vol 3 (2) ◽  
pp. 75-88
Author(s):  
Mahtab Ghorban Movahed ◽  
◽  
Ahya Abdi Ali ◽  

In recent years, the microbiome has been recognized as a key regulator of immune responses. Evidence suggests that changes in the microbiome can lead to chronic disease and even exacerbation of the disease. Impairment of innate immunity resulting from microbial incompatibility may worsen host susceptibility to infection and exacerbate chronic lung diseases. Specific microbes play a key role in improving immune responses and microbial incompatibility is involved in chronic lung diseases such as asthma, chronic obstructive pulmonary disease, and Cystic Fibrosis (CF). CF is an extremely complex disease that results from a gene mutation. Lack of expression of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) has late complications. Incompatibility in lung microbiota is associated with chronic lung diseases, but it is not determined whether this incompatibility can cause health problems or ineffective regulation of immune response create the disease and its progression. In the CF, due to the deficiency of the immune system, many opportunistic microorganisms, including Pseudomonas. aeruginosa or Staphylococcus aureus are colonized in the patient’s lung and due to an immunodeficiency causedby a defect in the system CFTR, lungs are unable to clear the bacteria that leads to severe pulmonary complications and respiratory and digestive problems in such patients. Therefore, in these patients, the microbiome contributes to dysfunctional immune responses and disease exacerbations. This review summarizes the impact of the microbiome on host immune responses and its relationship with CF to explore the role of the microbiome in causing CF.


2021 ◽  
Vol 22 (9) ◽  
pp. 5018
Author(s):  
Michael C. McKelvey ◽  
Ryan Brown ◽  
Sinéad Ryan ◽  
Marcus A. Mall ◽  
Sinéad Weldon ◽  
...  

Dysregulated protease activity has long been implicated in the pathogenesis of chronic lung diseases and especially in conditions that display mucus obstruction, such as chronic obstructive pulmonary disease, cystic fibrosis, and non-cystic fibrosis bronchiectasis. However, our appreciation of the roles of proteases in various aspects of such diseases continues to grow. Patients with muco-obstructive lung disease experience progressive spirals of inflammation, mucostasis, airway infection and lung function decline. Some therapies exist for the treatment of these symptoms, but they are unable to halt disease progression and patients may benefit from novel adjunct therapies. In this review, we highlight how proteases act as multifunctional enzymes that are vital for normal airway homeostasis but, when their activity becomes immoderate, also directly contribute to airway dysfunction, and impair the processes that could resolve disease. We focus on how proteases regulate the state of mucus at the airway surface, impair mucociliary clearance and ultimately, promote mucostasis. We discuss how, in parallel, proteases are able to promote an inflammatory environment in the airways by mediating proinflammatory signalling, compromising host defence mechanisms and perpetuating their own proteolytic activity causing structural lung damage. Finally, we discuss some possible reasons for the clinical inefficacy of protease inhibitors to date and propose that, especially in a combination therapy approach, proteases represent attractive therapeutic targets for muco-obstructive lung diseases.


2021 ◽  
Vol 12 ◽  
Author(s):  
Rucha Datar ◽  
Andreu Coello Pelegrin ◽  
Sylvain Orenga ◽  
Valérie Chalansonnet ◽  
Caroline Mirande ◽  
...  

Cystic fibrosis (CF) represents one of the major genetic and chronic lung diseases affecting Caucasians of European descent. Patients with CF suffer from recurring infections that lead to further damage of the lungs. Pulmonary infection due to Pseudomonas aeruginosa is most prevalent, further increasing CF-related mortality. The present study describes the phenotypic and genotypic variations among 36 P. aeruginosa isolates obtained serially from a non-CF and five CF patients before, during and after lung transplantation (LTx). The classical and genomic investigation of these isolates revealed a common mucoid phenotype and only subtle differences in the genomes. Isolates originating from an individual patient shared ≥98.7% average nucleotide identity (ANI). However, when considering isolates from different patients, substantial variations in terms of sequence type (ST), virulence factors and antimicrobial resistance (AMR) genes were observed. Whole genome multi-locus sequence typing (MLST) confirmed the presence of unique STs per patient regardless of the time from LTx. It was supported by the monophyletic clustering found in the genome-wide phylogeny. The antibiogram shows that ≥91.6% of the isolates were susceptible to amikacin, colistin and tobramycin. For other antibiotics from the panel, isolates frequently showed resistance. Alternatively, a comparative analysis of the 36 P. aeruginosa isolates with 672 strains isolated from diverse ecologies demonstrated clustering of the CF isolates according to the LTx patients from whom they were isolated. We observed that despite LTx and associated measures, all patients remained persistently colonized with similar isolates. The present study shows how whole genome sequencing (WGS) along with phenotypic analysis can help us understand the evolution of P. aeruginosa over time especially its antibiotic resistance.


2020 ◽  
Author(s):  
Valentino Bezzerri ◽  
Francesca Lucca ◽  
Sonia Volpi ◽  
Marco Cipolli

Abstract The Veneto region is one of the most affected Italian regions by COVID-19. Chronic lung diseases, such as chronic obstructive pulmonary disease (COPD), may constitute a risk factor in COVID-19. Moreover, respiratory viruses were generally associated with severe pulmonary impairment in cystic fibrosis (CF). We would have therefore expected numerous cases of severe COVID-19 among the CF population. Surprisingly, we found that CF patients were significantly protected against infection by SARS-CoV-2. We discussed this aspect formulating some reasonable theories.


Sign in / Sign up

Export Citation Format

Share Document