Migrating colonic lamina propria lymphocytes demonstrate increased T cell activation and proinflammatory cytokine production

2000 ◽  
Vol 118 (4) ◽  
pp. A818
Author(s):  
David E. Rowlands ◽  
Alastair Forbes ◽  
Stella C. Knight ◽  
Meron R. Jacyna
PLoS ONE ◽  
2013 ◽  
Vol 8 (6) ◽  
pp. e65492 ◽  
Author(s):  
Marcos Vinícius da Silva ◽  
Amanda A. Figueiredo ◽  
Juliana R. Machado ◽  
Lúcio C. Castellano ◽  
Patricia B. D. Alexandre ◽  
...  

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A649-A649
Author(s):  
Fiore Cattaruzza ◽  
Ayesha Nazeer ◽  
Zachary Lange ◽  
Caitlin Koski ◽  
Mikhail Hammond ◽  
...  

BackgroundTCEs are effective in leukemias but have been challenging in solid tumors due to on-target, off-tumor toxicity. Attempts to circumvent CRS include step-up dosing and/or complex designs but are unsuccessful due to toxicity and/or enhanced immunogenicity. HER2-XPAT, or XTENylated Protease-Activated bispecific T-Cell Engager, is a prodrug TCE that exploits the protease activity present in tumors vs. healthy tissue to expand the therapeutic index (TI). The core of the HER2-XPAT (PAT) consists of 2 tandem scFvs targeting CD3 and HER2. Attached to the core, two unstructured polypeptide masks (XTEN) sterically reduce target engagement and extend T1/2. Protease cleavage sites at the base of the XTEN masks enable proteolytic activation of XPATs in the tumor microenvironment, unleashing a potent TCE with short T1/2, further improving the TI. HER2-XPAT, a tumor protease-activatable prodrug with wide safety margins, can co-opt T-cells regardless of antigenic specificity to induce T-cell killing of HER2+ tumors.MethodsPreclinical studies were conducted to characterize the activity of HER2-XPAT, HER2-PAT (cleaved XPAT), and HER2-NonClv (a non-cleavable XPAT) for cytotoxicity in vitro, for anti-tumor efficacy in xenograft models, and for safety in NHPs.ResultsHER2-PAT demonstrated potent in vitro T-cell cytotoxicity (EC50 1-2pM) and target-dependent T-cell activation and cytokine production by hPBMCs. HER2-XPAT provided up to 14,000-fold protection against killing of HER2 tumor cells and no cytotoxicity against cardiomyocytes up to 1uM. In vivo, HER2-XPAT induced complete tumor regressions in BT-474 tumors with equimolar dosing to HER2-PAT, whereas HER2-NonClv had no efficacy, supporting requirement of protease cleavage for T-cell activity. In NHP, HER2-XPAT has been dose-escalated safely up to 42mg/kg (MTD). HER2-XPAT demonstrated early T-cell margination at 2 mg/kg but largely spared CRS, cytokine production, and tissue toxicity up to 42 mg/kg. PK profiles of HER2-XPAT and HER2-NonClv were comparable, consistent with ex vivo stability for cleavage when incubated in cancer pts plasma for 7 days at 37°C. HER2-PAT by continuous infusion induced lethal CRS and cytokine spikes at 0.3 mg/kg/d but was tolerated at 0.25 mg/kg/d, providing HER2-XPAT with >1300-fold protection in tolerability vs. HER2-PAT, >4 logs over cytotoxicity EC50s for HER2 cell lines, and a 20-fold safety margin over the dose required for pharmacodynamic activity.ConclusionsHER2-XPAT is a potent prodrug TCE with no CRS and a wide TI based on NHPs. With XTEN’s clinical data demonstrating low immunogenicity, the XPATs are a promising solution. IND studies are ongoing. Additional PK/PD, cytokines, safety, and efficacy data will be presented.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A119-A119
Author(s):  
Lu Bai ◽  
Kevin Nishimoto ◽  
Mustafa Turkoz ◽  
Marissa Herrman ◽  
Jason Romero ◽  
...  

BackgroundAutologous chimeric antigen receptor (CAR) T cells have been shown to be efficacious for the treatment of B cell malignancies; however, widespread adoption and application of CAR T cell products still face a number of challenges. To overcome these challenges, Adicet Bio is developing an allogeneic γδ T cell-based CAR T cell platform, which capitalizes on the intrinsic abilities of Vδ1 γδ T cells to recognize and kill transformed cells in an MHC-unrestricted manner, to migrate to epithelial tissues, and to function in hypoxic conditions. To gain a better understanding of the requirements for optimal intratumoral CAR Vδ1 γδ T cell activation, proliferation, and differentiation, we developed a three-dimensional (3D) tumor spheroid assay, in which tumor cells acquire the structural organization of a solid tumor and establish a microenvironment that has oxygen and nutrient gradients. Moreover, through the addition of cytokines and/or tumor stromal cell types, the spheroid microenvironment can be modified to reflect hot or cold tumors. Here, we report on the use of a 3D CD20+ Raji lymphoma spheroid assay to evaluate the effects of IL-2 and IL-15, positive regulators of T cell homeostasis and differentiation, on the proliferative and antitumor capacities of CD20 CAR Vδ1 γδ T cells.MethodsMolecular, phenotypic, and functional profiling were performed to characterize the in vitro dynamics of the intraspheroid CD20 CAR Vδ1 γδ T cell response to target antigen in the presence of IL-2, IL-15, or no added cytokine.ResultsWhen compared to no added cytokine, the addition of IL-2 or IL-15 enhanced CD20 CAR Vδ1 γδ T cell activation, proliferation, survival, and cytokine production in a dose-dependent manner but were only able to alter the kinetics of Raji cell killing at low effector to target ratios. Notably, differential gene expression analysis using NanoString nCounter® Technology confirmed the positive effects of IL-2 or IL-15 on CAR-activated Vδ1 γδ T cells as evidenced by the upregulation of genes involved in activation, cell cycle, mitochondrial biogenesis, cytotoxicity, and cytokine production.ConclusionsTogether, these results not only show that the addition of IL-2 or IL-15 can potentiate CD20 CAR Vδ1 γδ T cell activation, proliferation, survival, and differentiation into antitumor effectors but also highlight the utility of the 3D spheroid assay as a high throughput in vitro method for assessing and predicting CAR Vδ1 γδ T cell activation, proliferation, survival, and differentiation in hot and cold tumors.


2001 ◽  
Vol 114 (3) ◽  
pp. 671-680 ◽  
Author(s):  
Agnès Coronel ◽  
Aurélie Boyer ◽  
Jean-Denis Franssen ◽  
Jean-Loup Romet-Lemonne ◽  
Wolf Herman Fridman ◽  
...  

Author(s):  
M E Jacobs ◽  
J N Pouw ◽  
M A Olde Nordkamp ◽  
T R D J Radstake ◽  
E F A Leijten ◽  
...  

Abstract Background Signals at the contact site of antigen-presenting cells (APCs) and T cells help orchestrate the adaptive immune response. CD155 on APCs can interact with the stimulatory receptor DNAM1 or inhibitory receptor TIGIT on T cells. The CD155/DNAM1/TIGIT axis is under extensive investigation as immunotherapy target in inflammatory diseases including cancer, chronic infection and autoimmune diseases. We investigated a possible role for CD155/DNAM1/TIGIT signaling in psoriatic disease. Methods By flow cytometry we analyzed peripheral blood mononuclear cells of patients with psoriasis (n=20) or psoriatic arthritis (n=21), and healthy individuals (n=7). We measured CD155, TIGIT and DNAM1 expression on leukocyte subsets and compared activation-induced cytokine production between CD155-positive and -negative APCs. We assessed the effects of TIGIT and DNAM1 blockade on T cell activation, and related the expression of CD155/DNAM1/TIGIT axis molecules to measures of disease activity. Results High CD155 expression associates with TNF production in myeloid and plasmacytoid dendritic cells (DC). In CD1c+ myeloid DC, activation-induced CD155 expression associates with increased HLA-DR expression. CD8 T cells - but not CD4 T cells - express high levels of TIGIT. DNAM1 blockade decreases T cell pro-inflammatory cytokine production, while TIGIT blockade increased T cell proliferation. Finally, T cell TIGIT expression shows an inverse correlation with inflammation biomarkers in psoriatic disease. Conclusion CD155 is increased on pro-inflammatory APCs, while the receptors DNAM1 and TIGIT expressed on T cells balance the inflammatory response by T cells. In psoriatic disease, low TIGIT expression on T cells is associated with systemic inflammation.


PLoS ONE ◽  
2015 ◽  
Vol 10 (5) ◽  
pp. e0127416 ◽  
Author(s):  
Danuza Esquenazi ◽  
Iris Maria Peixoto Alvim ◽  
Roberta Olmo Pinheiro ◽  
Eliane Barbosa de Oliveira ◽  
Lilian de Oliveira Moreira ◽  
...  

2007 ◽  
Vol 125 (3) ◽  
pp. 318-327 ◽  
Author(s):  
Mustapha Allam ◽  
Nathalie Julien ◽  
Boulos Zacharie ◽  
Christopher Penney ◽  
Lyne Gagnon

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4566-4566
Author(s):  
Matthias Krusch ◽  
Sabine Wintterle ◽  
Lieping Chen ◽  
Lothar Kanz ◽  
Heinz Wiendl ◽  
...  

Abstract Objective: Expression of the B7-homologue B7-H1 (PD1-Ligand) has been proposed to enable tumor cells to evade immune surveillance. Recently, B7-H1 on murine leukemia cells was reported to mediate resistance to cytolytic T-cell destruction. In this study we investigated the expression and functional role of the B7-homologue B7-H1 in human leukemia. Patients and Methods: Leukemia cells from 20 patients and 9 human leukemia cell lines were investigated for B7-H1 expression by flow cytometry. Functional relevance of B7-H1 for tumor-immune interactions was assessed by coculture experiments using purified, alloreactive CD4 and CD8 T-cells in the presence of a neutralizing anti-B7-H1 antibody. Results: Significant B7-H1 expression levels on leukemia cells were detected in 13 of 20 patients and in 8 of 9 cell lines. In contrast to various other tumor entities and the data reported from a murine leukemia system we did not observe any significant inhibitory effect of leukemia-derived B7-H1 on CD4 and CD8 cytokine production (IFN-g, IL-2) or expression of T-cell activation markers (ICOS, CD69). In the presence of a neutralizing B7-H1 antibody (mAb 5H1) no significant changes in T cell IFN-g or IL-2 production were observed. Conclusions: Our data demonstrate that leukemia-derived B7-H1 seems to have no direct influence on T-cell activation and cytokine production in humans. Further experiments are warranted to delineate factors and characterize yet unidentified B7-H1 receptor(s) that determine inhibitory and stimulatory functions of B7-H1 in human leukemia.


Sign in / Sign up

Export Citation Format

Share Document