303 Systemic Control of Plasmacytoid Dendritic Cells By CD8+ T Cells and Commensal Microbiota

2008 ◽  
Vol 134 (4) ◽  
pp. A-43
Author(s):  
Daisuke Fujiwara ◽  
Bo Wei ◽  
Laura L. Presley ◽  
Sarah N. Brewer ◽  
Michael McPherson ◽  
...  
2008 ◽  
Vol 180 (9) ◽  
pp. 5843-5852 ◽  
Author(s):  
Daisuke Fujiwara ◽  
Bo Wei ◽  
Laura L. Presley ◽  
Sarah Brewer ◽  
Michael McPherson ◽  
...  

2002 ◽  
Vol 195 (6) ◽  
pp. 695-704 ◽  
Author(s):  
Michel Gilliet ◽  
Yong-Jun Liu

Although CD8 T cell–mediated immunosuppression has been a well-known phenomenon during the last three decades, the nature of primary CD8 T suppressor cells and the mechanism underlying their generation remain enigmatic. We demonstrated that naive CD8 T cells primed with allogeneic CD40 ligand–activated plasmacytoid dendritic cells (DC)2 differentiated into CD8 T cells that displayed poor secondary proliferative and cytolytic responses. By contrast, naive CD8 T cells primed with allogeneic CD40 ligand–activated monocyte-derived DCs (DC1) differentiated into CD8 T cells, which proliferated to secondary stimulation and killed allogeneic target cells. Unlike DC1-primed CD8 T cells that produced large amounts of interferon (IFN)-γ upon restimulation, DC2-primed CD8 T cells produced significant amounts of interleukin (IL)-10, low IFN-γ, and no IL-4, IL-5, nor transforming growth factor (TGF)-β. The addition of anti–IL-10–neutralizing monoclonal antibodies during DC2 and CD8 T cell coculture, completely blocked the generation of IL-10–producing anergic CD8 T cells. IL-10–producing CD8 T cells strongly inhibit the allospecific proliferation of naive CD8 T cells to monocytes, and mature and immature DCs. This inhibition was mediated by IL-10, but not by TGF-β. IL-10–producing CD8 T cells could inhibit the bystander proliferation of naive CD8 T cells, provided that they were restimulated nearby to produce IL-10. IL-10–producing CD8 T cells could not inhibit the proliferation of DC1-preactivated effector T cells. This study demonstrates that IL-10–producing CD8 T cells are regulatory T cells, which provides a cellular basis for the phenomenon of CD8 T cell–mediated immunosuppression and suggests a role for plasmacytoid DC2 in immunological tolerance.


2015 ◽  
Vol 3 (4) ◽  
pp. 412-423 ◽  
Author(s):  
Theodore Kouo ◽  
Lanqing Huang ◽  
Alexandra B. Pucsek ◽  
Minwei Cao ◽  
Sara Solt ◽  
...  

Oncotarget ◽  
2016 ◽  
Vol 7 (10) ◽  
pp. 10947-10961 ◽  
Author(s):  
Young-In Kim ◽  
Bo-Ra Lee ◽  
Jae-Hee Cheon ◽  
Bo-Eun Kwon ◽  
Mi-Na Kweon ◽  
...  

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4917-4917
Author(s):  
Jan Storek ◽  
Rob Woolson ◽  
Paul K. Wallace ◽  
Gregory Sempowski ◽  
Peter A. McSweeney ◽  
...  

Abstract Abstract 4917 Introduction: Systemic sclerosis (SSc) is presumed to result from aberrant activation of autoreactive T cells. However, the exact pathogenesis of SSc is not known. Patients and Methods: To contribute to the understanding of the immunopathology of systemic sclerosis (SSc), we compared blood counts of multiple lymphocyte subsets between 20 adult SSc patients not treated with immunomodulatory drugs and healthy controls. The patients had to fit entry criteria for SCOT trial (Scleroderma – Cyclophosphamide or Transplantation?, www.sclerodermatrial.org), i.e, 1. symptoms for no longer than 5 years (except for Raynaud's phenomenon), 2. diffuse scleroderma, and 3. either moderate lung involvement (forced vital capacity (FVC) or diffusion of carbon monoxide (DLCO) between 45 and 70% predicted) or moderate kidney involvement (history of hypertensive renal crisis, but normal renal function at study entry). Multiparameter flow cytometry was used for the determination of the lymphocyte subset counts. Results: Counts of the following subsets were significantly lower in the patients compared to the controls: total T cells (median 1316 vs 2088/ul, p=0.015), total CD8 T cells (273 vs 580/ul, p<0.001), central memory CD8 T cells (23 vs 87/ul, p<0.001), effector memory CD8 T cells (17 vs 39/ul, p=0.015), effector CD8 T cells (28 vs 68/ul, p=0.001), gamma/delta T cells (31 vs 77/ul, p<0.001), switched (IgM/DàIgG/A isotype switched) memory B cells (6 vs 26/ul, p<0.001), non-switched memory B cells (7 vs 17/ul, p=0.004), and plasmacytoid dendritic cells (2 vs 6/ul, p=0.002). Counts of Th2-biased (producing interleukin-4 upon polyclonal stimulation) CD4 as well as CD8 T cells were significantly higher in the patients compared to the controls (248 vs 139/ul for CD4, p=0.002, and 259 vs 164/ul for CD8, p<0.001). Conclusion: Immunopathology of SSc is complex. Low blood counts of memory/effector CD8 T cells, gamma/delta T cells, memory B cells and plasmacytoid dendritic cells and Th2-biased T cells may play a role in the pathogenesis of SSc. However, cause and effect relations need to be established. Given previous reports of increased numbers of CD8 and gamma/delta T cells in the affected tissues of patients with systemic sclerosis and increased numbers of plasmacytoid dendritic cells in the affected tissues of patients with autoimmune diseases (compared to healthy individuals) (Prescott RJ et al: J Pathol 166 (1992) 255–63, Atamas SP et al: Arthritis Rheum 42 (1999) 1168–78, Giacomelli R et al: Arthritis Rheum 41 (1998) 327–34, Yurovski VV et al: J Immunol 153 (1994) 881–91, Nestle FO et al: J Exp Med 202 (2005) 35–43, Farkas L et al: Am J Pathol 159 (2001) 237–43), it is possible that the low blood counts of CD8 T cells, gamma/delta T cells and plasmacytoid dendritic cells result from redistribution of these cells from blood to affected tissues. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2013 ◽  
Vol 121 (3) ◽  
pp. 459-467 ◽  
Author(s):  
Jurjen Tel ◽  
Gerty Schreibelt ◽  
Simone P. Sittig ◽  
Till S. M. Mathan ◽  
Sonja I. Buschow ◽  
...  

Abstract In human peripheral blood, 4 populations of dendritic cells (DCs) can be distinguished, plasmacytoid dendritic cells (pDCs) and CD16+, CD1c+, and BDCA-3+ myeloid DCs (mDCs), each with distinct functional characteristics. DCs have the unique capacity to cross-present exogenously encountered antigens (Ags) to CD8+ T cells. Here we studied the ability of all 4 blood DC subsets to take up, process, and present tumor Ags to T cells. Although pDCs take up less Ags than CD1c+ and BDCA3+ mDCs, pDCs induce potent Ag-specific CD4+ and CD8+ T-cell responses. We show that pDCs can preserve Ags for prolonged periods of time and on stimulation show strong induction of both MHC class I and II, which explains their efficient activation of both CD4+ and CD8+ T cells. Furthermore, pDCs cross-present soluble and cell-associated tumor Ags to cytotoxic T lymphocytes equally well as BDCA3+ mDCs. These findings, and the fact that pDCs outnumber BDCA3+ mDCs, both in peripheral blood and lymph nodes, together with their potent IFN-I production, known to activate both components of the innate and adaptive immune system, put human pDCs forward as potent activators of CD8+ T cells in antitumor responses. Our findings may therefore have important consequences for the development of antitumor immunotherapy.


2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Marine Oberkampf ◽  
Camille Guillerey ◽  
Juliette Mouriès ◽  
Pierre Rosenbaum ◽  
Catherine Fayolle ◽  
...  

2020 ◽  
Vol 117 (38) ◽  
pp. 23730-23741 ◽  
Author(s):  
Chunmei Fu ◽  
Peng Peng ◽  
Jakob Loschko ◽  
Li Feng ◽  
Phuong Pham ◽  
...  

Although plasmacytoid dendritic cells (pDCs) have been shown to play a critical role in generating viral immunity and promoting tolerance to suppress antitumor immunity, whether and how pDCs cross-prime CD8 T cells in vivo remain controversial. Using a pDC-targeted vaccine model to deliver antigens specifically to pDCs, we have demonstrated that pDC-targeted vaccination led to strong cross-priming and durable CD8 T cell immunity. Surprisingly, cross-presenting pDCs required conventional DCs (cDCs) to achieve cross-priming in vivo by transferring antigens to cDCs. Taking advantage of an in vitro system where only pDCs had access to antigens, we further demonstrated that cross-presenting pDCs were unable to efficiently prime CD8 T cells by themselves, but conferred antigen-naive cDCs the capability of cross-priming CD8 T cells by transferring antigens to cDCs. Although both cDC1s and cDC2s exhibited similar efficiency in acquiring antigens from pDCs, cDC1s but not cDC2s were required for cross-priming upon pDC-targeted vaccination, suggesting that cDC1s played a critical role in pDC-mediated cross-priming independent of their function in antigen presentation. Antigen transfer from pDCs to cDCs was mediated by previously unreported pDC-derived exosomes (pDCexos), that were also produced by pDCs under various conditions. Importantly, all these pDCexos primed naive antigen-specific CD8 T cells only in the presence of bystander cDCs, similarly to cross-presenting pDCs, thus identifying pDCexo-mediated antigen transfer to cDCs as a mechanism for pDCs to achieve cross-priming. In summary, our data suggest that pDCs employ a unique mechanism of pDCexo-mediated antigen transfer to cDCs for cross-priming.


Sign in / Sign up

Export Citation Format

Share Document