54 Vertical Sleeve Gastrectomy Improves Glucose and Lipid Metabolism and Delays Diabetes Onset in the UCD-T2DM Rat Model of Type 2 Diabetes

2012 ◽  
Vol 142 (5) ◽  
pp. S-14
Author(s):  
Bethany P. Cummings ◽  
James Graham ◽  
Kimber L. Stanhope ◽  
Peter J. Havel
2019 ◽  
Author(s):  
DaoFei Song ◽  
Lei Yin ◽  
Chang Wang ◽  
XiuYing Wen

AbstractAIMIn this study, we investigated the role and mechanism of Salt-induced kinase 1 (SIK1) in regulation of hepatic glucose and lipid metabolism in a high-fat food (HFD) and streptozocin (STZ)-induced type 2 diabetes mellitus (T2DM) rat model.MethodsA diabetic rat model treated with HFD plus low-dose STZ was developed and was transduced to induce a high expression of SIK1 in vivo via a tail-vein injection of a recombinant adenoviral vector. The effects on hepatic glucogenetic and lipogenic gene expression, systemic metabolism and pathological changes were then determined.ResultsIn T2DM rats, SIK1 expression was reduced in the liver. Overexpression of SIK1 improved hyperglycaemia, hyperlipidaemia and fatty liver, reduced the expression of cAMP-response element binding protein (CREB)-regulated transcription co-activator 2 (CRTC2), phosphoenolpyruvate carboxykinase (PEPCK), glucose-6-phosphatase (G6Pase), pS577 SIK1, sterol regulatory element binding-protein-1c (SREBP-1c) and its target genes, including acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS), and increased the expression of SIK1, pT182 SIK1 and pS171 CRTC2 in diabetic rat livers with the suppression of gluconeogenesis and lipid deposition.ConclusionSIK1 plays a crucial role in the regulation of glucose and lipid metabolism in the livers of HFD/STZ-induced T2DM rats, where it suppresses hepatic gluconeogenesis and lipogenesis by regulating the SIK1/CRTC2 and SIK1/SREBP-1c signalling pathways. Strategies to activate SIK1 kinase in liver would likely have beneficial effects in patients with T2DM and nonalcoholic fatty liver disease (NAFLD).


2012 ◽  
Vol 167 (4) ◽  
pp. 569-578 ◽  
Author(s):  
Francisco J Ortega ◽  
Mónica Sabater ◽  
José M Moreno-Navarrete ◽  
Neus Pueyo ◽  
Patricia Botas ◽  
...  

ObjectiveIncreased circulating calprotectin has been reported in obese subjects but not in association with measures of insulin resistance and type 2 diabetes (T2D). The main aim of this study was to determine whether calprotectins in plasma and urine are associated with insulin resistance.DesignWe performed both cross-sectional and longitudinal (diet-induced weight loss) studies.MethodsCirculating calprotectin concentrations (ELISA), other inflammatory markers, homeostasis model assessment of insulin resistance (HOMA-IR), and parameters of glucose and lipid metabolism were evaluated in 298 subjects (185 with normal (NGT) and 62 with impaired (IGT) glucose tolerance and 51 T2D subjects). Calprotectin was also evaluated in urine samples from 71 participants (50 NGT and 21 subjects with IGT). Insulin sensitivity (SI, Minimal Model) was determined in a subset of 156 subjects, and the effects of weight loss were investigated in an independent cohort of obese subjects (n=19).ResultsCirculating calprotectin was significantly increased in IGT–T2D (independently of BMI) and positively associated with HOMA-IR, obesity measures, inflammatory markers, and parameters of glucose and lipid metabolism. Similar findings were reported for calprotectin concentrations in urine. In the subset of subjects, the association of calprotectin withSIwas independent of BMI and age. In fact,SItogether with C-reactive protein contributed to 27.4% of calprotectin variance after controlling for age and blood neutrophils count. Otherwise, weight loss led to decreased circulating calprotectin in parallel to fasting glucose and HOMA-IR.ConclusionThese findings suggest that circulating and urinary concentrations of calprotectin are linked to chronic low-grade inflammation and insulin resistance beyond obesity.


2018 ◽  
Vol 64 (2) ◽  
pp. 39-45 ◽  
Author(s):  
Nataliia Gorbenko ◽  
Oleksii Borikov ◽  
Olha Ivanova ◽  
K. V. Taran ◽  
T. S. Litvinova ◽  
...  

A sex difference of carbohydrate and lipid metabolism disorders in rats with type 2 diabetes has been studied. It was established that type 2 diabetes leads to a more pronounced deterioration in carbohydrate toleranceand insulin sensitivity in males compared to female rats, but the sex doesn’t affect basal glycemia and fructosamine levels. It was found that the increase of body weight and visceral fat in rats with type 2 diabetes is moremanifested in females than in males. It has been determined that hypertriglyceridemia is higher in diabeticmales compared to diabetic females, and the level of common lipids in the liver, both intact females and femaleswith type 2 diabetes, is lower than that of the males. The obtained results indicate a more expressive impairment of glucose and lipid metabolism in males compared to females with type 2 diabetes


2017 ◽  
Vol 9 (5) ◽  
pp. 403-409 ◽  
Author(s):  
Hirokazu Kakuda ◽  
Junji Kobayashi ◽  
Masaru Sakurai ◽  
Masahiro Kakuda ◽  
Noboru Takekoshi

Sign in / Sign up

Export Citation Format

Share Document