SEX DIFFERENCES OF CARBOHYDRATE AND LIPID METABOLISM IMPAIRMENT IN RATS WITH TYPE 2 DIABETES MELLITUS

2018 ◽  
Vol 64 (2) ◽  
pp. 39-45 ◽  
Author(s):  
Nataliia Gorbenko ◽  
Oleksii Borikov ◽  
Olha Ivanova ◽  
K. V. Taran ◽  
T. S. Litvinova ◽  
...  

A sex difference of carbohydrate and lipid metabolism disorders in rats with type 2 diabetes has been studied. It was established that type 2 diabetes leads to a more pronounced deterioration in carbohydrate toleranceand insulin sensitivity in males compared to female rats, but the sex doesn’t affect basal glycemia and fructosamine levels. It was found that the increase of body weight and visceral fat in rats with type 2 diabetes is moremanifested in females than in males. It has been determined that hypertriglyceridemia is higher in diabeticmales compared to diabetic females, and the level of common lipids in the liver, both intact females and femaleswith type 2 diabetes, is lower than that of the males. The obtained results indicate a more expressive impairment of glucose and lipid metabolism in males compared to females with type 2 diabetes

2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Jinnan Li ◽  
Jinlei Feng ◽  
Hong Wei ◽  
Qunying Liu ◽  
Ting Yang ◽  
...  

Type 2 diabetes mellitus (T2DM) is a chronic disease characterized by hyperglycemia and dyslipidemia caused by impaired insulin secretion and resistance of the peripheral tissues. A major pathogenesis of T2DM is obesity-associated insulin resistance. Gynura divaricata (L.) DC. (GD) is a natural plant and has been reported to have numerous health-promoting effects on both animals and humans. In this study, we aimed to elucidate the regulatory mechanism of GD improving glucose and lipid metabolism in an obesity animal model induced by high-fat and high-sugar diet in combination with low dose of streptozocin and an insulin-resistant HepG2 cell model induced by dexamethasone. The study showed that the water extract of GD (GD extract A) could significantly reduce fasting serum glucose, reverse dyslipidemia and pancreatic damage, and regulate the body weight of mice. We also found that GD extract A had low toxicity in vivo and in vitro. Furthermore, GD extract A may increase glucose consumption in insulin-resistant HepG2 cells, markedly inhibit NF-κB activation, and decrease the impairment in signaling molecules of insulin pathway, such as IRS-1, AKT, and GLUT1. Overall, the results indicate that GD extract A is a promising candidate for the prevention and treatment of T2DM.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Yajing Li ◽  
Minli Chen ◽  
Hongzhuan Xuan ◽  
Fuliang Hu

The present study investigates the encapsulated propolis on blood glycemic control, lipid metabolism, and insulin resistance in type 2 diabetes mellitus (T2DM) rats. The animal characteristics and biological assays of body weight, fasting blood glucose (FBG), fasting serum insulin (FINS), insulin act index (IAI), triglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) were measured and euglycemic hyperinsulinemic glucose clamp technique were used to determine these effects. Our findings show that oral administration of encapsulated propolis can significantly inhibit the increasing of FBG and TG in T2DM rats and can improve IAI and M value in euglycemic hyperinsulinemic clamp experiment. There was no significant effects on body weight, TC, HDL-C, and LDL-C in T2DM rats treated with encapsulated propolis. In conclusion, the results indicate that encapsulated propolis can control blood glucose, modulate lipid metabolism, and improve the insulin sensitivity in T2DM rats.


2003 ◽  
Vol 49 (1) ◽  
pp. 25-27
Author(s):  
N. T. Starkova ◽  
V. V. Dolgov ◽  
A. L. Davydov ◽  
A. P. Roitman ◽  
L. Yu. Baranova ◽  
...  

The effects of lipostat and maninil on carbohydrate and lipid metabolisms and their hormonal regulators were studied in 36 obese patients aged 50- 70 years who had type 2 diabetes mellitus concurrent with dyslipidemia. A course of therapy with lipostat in a daily dose of 20 mg for 3 months was shown to lead to nor­malization of lipid metabolism, to diminished glycemia and hy- perinsulinemia, and to an increase in fasting plasma somatotrop­ic hormone levels to normal values, these were not observed in the control group.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Banu Boyuk ◽  
Serife Degirmencioglu ◽  
Hande Atalay ◽  
Savas Guzel ◽  
Ayse Acar ◽  
...  

Background and Aim. Studies have suggested that brain-derived neurotrophic factor (BDNF) plays a role in glucose and lipid metabolism and inflammation. The aim of this study was to evaluate the relationship between serum BDNF levels and various metabolic parameters and inflammatory markers in patients with type 2 diabetes mellitus (T2DM).Materials and Methods. The study included 88 T2DM patients and 33 healthy controls. Fasting blood samples were obtained from the patients and the control group. The serum levels of BDNF were measured with an ELISA kit. The current paper introduces a receiver-operating characteristic (ROC) generalization curve to identify cut-off for the BDNF values in type 2 diabetes patients.Results. The serum levels of BDNF were significantly higher in T2DM patients than in the healthy controls (206.81 ± 107.32 pg/mL versus 130.84 ± 59.81 pg/mL;P<0.001). They showed a positive correlation with the homeostasis model assessment of insulin resistance (HOMA-IR) (r=0.28;P<0.05), the triglyceride level (r=0.265;P<0.05), and white blood cell (WBC) count (r=0.35;P<0.001). In logistic regression analysis, age (P<0.05), body mass index (BMI) (P<0.05), C-reactive protein (CRP) (P<0.05), and BDNF (P<0.01) were independently associated with T2DM. In ROC curve analysis, BDNF cut-off was 137.Conclusion. The serum BDNF level was higher in patients with T2DM. The BDNF had a cut-off value of 137. The findings suggest that BDNF may contribute to glucose and lipid metabolism and inflammation.


Sign in / Sign up

Export Citation Format

Share Document