The proximity effect on semiconducting mineral surfaces: a new aspect of mineral surface reactivity and surface complexation theory?

2001 ◽  
Vol 65 (16) ◽  
pp. 2641-2649 ◽  
Author(s):  
Udo Becker ◽  
Kevin M. Rosso ◽  
Michael F. Hochella
2002 ◽  
Vol 66 (5) ◽  
pp. 653-676 ◽  
Author(s):  
D. J. Vaughan ◽  
R. A. D. Pattrick ◽  
R. A. Wogelius

AbstractAspects of the (bio)geochemical cycling of metals (including Fe, Cu, Pb, Zn, Hg, As, Sb, U, Tc, Np) at or near the Earth's surface are discussed with reference to the recent work of the authors. Key stages of the breakdown of metalliferous minerals, transport of metals as solution complexes or colloidal precipitates, and interaction of metals in solution with the surfaces of minerals are considered. Emphasis is on molecular-scale observations using techniques such as scanning probe microscopy, photoelectron and (synchrotron) X-ray spectroscopies. The importance of the biological/mineralogical interface is also emphasized with reference to the bacterial colonization of mineral surfaces and formation of biofilms, and their influence on mineral surface reactivity and flow of fluids through rocks and sediments. Also noted is the importance of relating molecular and micro-scale observations to macroscopic phenomena. Molecular-scale understanding is central to attempts to model many processes of relevance in mineral exploration and exploitation, and in the containment of hazardous wastes and remediation of polluted areas. Mineralogists have a central role to play in the relevant environmental sciences and technologies.


Author(s):  
V.K. Berry

There are two strains of bacteria viz. Thiobacillus thiooxidansand Thiobacillus ferrooxidanswidely mentioned to play an important role in the leaching process of low-grade ores. Another strain used in this study is a thermophile and is designated Caldariella .These microorganisms are acidophilic chemosynthetic aerobic autotrophs and are capable of oxidizing many metal sulfides and elemental sulfur to sulfates and Fe2+ to Fe3+. The necessity of physical contact or attachment by bacteria to mineral surfaces during oxidation reaction has not been fairly established so far. Temple and Koehler reported that during oxidation of marcasite T. thiooxidanswere found concentrated on mineral surface. Schaeffer, et al. demonstrated that physical contact or attachment is essential for oxidation of sulfur.


2009 ◽  
Vol 71-73 ◽  
pp. 319-328 ◽  
Author(s):  
K. Hanumantha Rao ◽  
Annamaria Vilinska ◽  
I.V. Chernyshova

Conventionally, physico-chemical methods are used in mineral processing for recovering value minerals from ores. The ageing of ore processing tailings and waste rocks, and mining tailings contamination by chemical reagents constitute a major threat to the environment. It is imperative to develop novel economically more efficient and environmentally benign methods of flotation and waste processing, exploiting the intriguing and exciting ability of bacteria to selectively modify the surface properties of solids. Microorganisms have not only facilitate hydrometallurgical leaching operations but have also show a great promise in mineral beneficiation processes such as flotation and flocculation. Several laboratory investigations revealed that microorganisms could function similar to traditional reagents. Microorganisms have a tremendous influence on their environment through the transfer of energy, charge, and materials across a complex biotic mineral-solution interface. The bio-modification of mineral surfaces involves the complex action of microorganism on the mineral surface. The manner, in which bacteria affect the surface reactivity and the mechanism of bacteria adsorption, is still unknown and accumulation of the primary data in this area is only starting. The bio-flotation and bio-flocculation processes concern the mineral response to the bacterium presence, which is essentially interplay between microorganism and the physicochemical properties of the mineral surface, such as the atomic and electronic structure, the net charge/potential, acid-base properties, and wettability of the surface. There is an urgent need for developing basic knowledge that would underpin biotechnological innovations in the natural resource (re)processing technologies that deliver competitive solutions.


2014 ◽  
Vol 11 (5) ◽  
pp. 6815-6844
Author(s):  
S. C. Löhr ◽  
M. J. Kennedy

Abstract. Organic carbon (OC) enrichment in sediments deposited during Oceanic Anoxic Events (OAEs) is commonly attributed to elevated productivity and marine anoxia. We find that OC enrichment in the late Cenomanian aged OAE2 at Demerara Rise was controlled by co-occurrence of anoxic bottom-water, sufficient productivity to saturate available mineral surfaces and variable deposition of high surface area detrital smectite clay. Redox indicators show consistently oxygen-depleted conditions, while a strong correlation between OC concentration and sediment mineral surface area (R2=0.92) occurs across a range of TOC values from 9–33%. X-ray diffraction data indicates intercalation of OC in smectite interlayers while electron, synchrotron infrared and X-ray microscopy show an intimate association between clay minerals and OC, consistent with preservation of OC as organomineral nanocomposites and aggregates rather than discrete, μm-scale pelagic detritus. Since the consistent ratio between TOC and mineral surface area suggests that excess OC relative to surface area is lost, we propose that it is the varying supply of smectite that best explains variable organic enrichment against a backdrop of continuous anoxia, which is conducive to generally high TOC during OAE2 at Demerara Rise. Smectitic clays are unique in their ability to form stable organomineral nanocomposites and aggregates that preserve organic matter, and are common weathering products of continental volcanic deposits. An increased flux of smectite coinciding with high carbon burial is consistent with evidence for widespread volcanism during OAE2, so that organomineral carbon burial may represent a potential feedback to volcanic degassing of CO2.


Minerals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 185
Author(s):  
Christine Putnis

Reactions at mineral surfaces are central to all geochemical processes. As minerals comprise the rocks of the Earth, the processes occurring at the mineral–aqueous fluid interface control the evolution of the rocks and, hence, the structure of the crust of the Earth during such processes at metamorphism, metasomatism, and weathering. In recent years, focus has been concentrated on mineral surface reactions made possible through the development of advanced analytical techniques, such as atomic force microscopy (AFM), advanced electron microscopies (SEM and TEM), phase shift interferometry, confocal Raman spectroscopy, advanced synchrotron-based applications, complemented by molecular simulations, to confirm or predict the results of experimental studies. In particular, the development of analytical methods that allow direct observations of mineral–fluid reactions at the nanoscale have revealed new and significant aspects of the kinetics and mechanisms of reactions taking place in fundamental mineral–fluid systems. These experimental and computational studies have enabled new and exciting possibilities to elucidate the mechanisms that govern mineral–fluid reactions, as well as the kinetics of these processes, and, hence, to enhance our ability to predict potential mineral behavior. In this Special Issue “Mineral Surface Reactions at the Nanoscale”, we present 12 contributions that highlight the role and importance of mineral surfaces in varying fields of research.


2007 ◽  
Vol 19 (3) ◽  
pp. 297-307 ◽  
Author(s):  
Roy A. Wogelius ◽  
Peter M. Morris ◽  
Michael A. Kertesz ◽  
Emmanuelle Chardon ◽  
Alexander I.R. Stark ◽  
...  

Author(s):  
Zhao Du ◽  
Xingyi Zhu

Asphalt-aggregate interface properties are considered to play a crucial role in asphalt mixture. To better understand the detailed binding mechanism, the present study analyzed the adhesion and diffusion of asphalt binder on mineral surfaces at a nanoscale based on molecular dynamics simulation. A 12-component AAA-1 asphalt model and five oxide models were generated to represent asphalt binder and mineral aggregates, respectively. The effectiveness of these models was validated by comparing the physical properties of the model with the values reported in the literature. The binding energy and diffusion coefficient obtained were examined to characterize the adhesion and diffusion of asphalt on different mineral surfaces. The results indicated that van der Waals energy played the main role in forming the strong physisorption of asphalt on the mineral surface. Among all four fractions of asphalt, asphaltene made a great contribution to the adhesion of asphalt on the mineral surface. It was also found that the work of adhesion between asphalt and five oxides ranked MgO > CaO > Al2O3 > Fe2O3 > SiO2. The content of MgO and CaO in mineral aggregates can be further adopted as an index to evaluate and classify mineral aggregates during asphalt mixture design. Meanwhile, asphalt mobility does not entirely rely on the molecular mass but also depends strongly on the medium it adsorbed into and interaction energy. This work provides a fundamental understanding of the adhesion and diffusion of asphalt binder on the mineral aggregate surface at the atomistic scale.


Author(s):  
Craig M. Bethke

An important consideration in constructing certain types of geochemical models, especially those applied to environmental problems, is to account for the sorption of ions from solution onto mineral surfaces. Metal oxides and aluminosilicate minerals, as well as other phases, can sorb electrolytes strongly because of their high reactivities and large surface areas (e.g., Davis and Kent, 1990). When a fluid comes in contact with minerals such as iron or aluminum oxides and zeolites, sorption may significantly diminish the mobility of dissolved components in solution, especially those present in minor amounts. Sorption, for example, may retard the spread of radionuclides near a radioactive waste repository or the migration of contaminants away from a polluting landfill. In acid mine drainages, ferric oxide sorbs heavy metals from surface water, helping limit their downstream movement (see Chapter 23). A geochemical model useful in investigating such cases must provide an accurate assessment of the effects of surface reactions. Many of the sorption theories now in use are too simplistic to be incorporated into a geochemical model intended for general use. To be useful in modeling electrolyte sorption, a theory must account for the electrical charge on the mineral surface and provide for mass balance on the sorbing sites. In addition, an internally consistent and sufficiently broad database of sorption reactions must accompany the theory. The Freundlich and Langmuir theories, which use distribution coefficients Kd to set the ratios of sorbed to dissolved ions, are applied widely in groundwater studies (Domenico and Schwartz, 1990) and used with considerable success to describe sorption of uncharged organic molecules (Adamson, 1976). The models, however, do not account for the electrical state of the surface, which varies sharply with pH, ionic strength, and solution composition. Freundlich theory prescribes no concept of mass balance, so that a surface might be predicted to sorb from solution without limit. Both theories require that distribution coefficients be determined experimentally for individual fluid and rock compositions, and hence both theories lack generality. Ion exchange theory (Stumm and Morgan, 1981; Sposito, 1989) suffers from similar limitations. Surface complexation models, on the other hand, account explicitly for the electrical state of the sorbing surface (e.g., Adamson, 1976; Stumm, 1992).


Sign in / Sign up

Export Citation Format

Share Document