A new constitutive equation that models extensional flow strain hardening based on evolving natural configurations: stability analysis

2004 ◽  
Vol 39 (3) ◽  
pp. 379-387 ◽  
Author(s):  
Liviu-Iulian Palade ◽  
Jay R Walton ◽  
Angiolo Farina
2004 ◽  
Vol 3 (2) ◽  
pp. 134
Author(s):  
R. L. Thompson ◽  
P. R. Souza Mendes

Non-Newtonian materials respond differently when submitted to shear or extension. A constitutive equation in which the stress is a function of both the rate of deformation and on the type of the flow is proposed and analyzed theoretically. It combines information obtained in shear, extension and rigid body motion in all regions of complex flow. The analysis has shown how to insert some elastic effects in a constitutive equation that depends only on the present time and position. One advantage of the model is that all the steady rheological functions in simple shear flow and in extensional flow are predicted exactly. Another important property that is included is the split of the extensional viscosity in two parts: one dissipative part that is related to the shear viscosity and an elastic part that is related to the first and second normal stress coefficients in shear. A discussion involving the dimensionless numbers that relate elastic and viscosity effects is also given.


2019 ◽  
Vol 877 ◽  
pp. 561-581 ◽  
Author(s):  
Moshe Favelukis

In this theoretical report we explore the deformation and stability of a power-law non-Newtonian slender drop embedded in a Newtonian liquid undergoing a nonlinear extensional creeping flow. The dimensionless parameters describing this problem are: the capillary number $(Ca\gg 1)$, the viscosity ratio $(\unicode[STIX]{x1D706}\ll 1)$, the power-law index $(n)$ and the nonlinear intensity of the flow $(|E|\ll 1)$. Asymptotic analytical solutions were obtained near the centre and close to the end of the drop suggesting that only Newtonian and shear thinning drops $(n\leqslant 1)$ with pointed ends are possible. We described the shape of the drop as a series expansion about the centre of the drop, and performed a stability analysis in order to distinguish between stable and unstable stationary states and to establish the breakup point. Our findings suggest: (i) shear thinning drops are less elongated than Newtonian drops, (ii) as non-Newtonian effects increase or as $n$ decreases, breakup becomes more difficult, and (iii) as the flow becomes more nonlinear, breakup is facilitated.


Author(s):  
Aly El Domiaty ◽  
Abdel-Hamid I. Mourad ◽  
Abdel-Hakim Bouzid

One of the most significant approaches for predicting formability is the use of forming limit diagrams (FLDs). The development of the generalized model integrates other models. The first model is based on Von-Misses yield criterion (traditionally used for isotropic material) and power law constitutive equation considering the strain hardening exponent. The second model is also based on Von-Misses yield criterion but uses a power law constitutive equation that considers the effect of strain rate sensitivity factor. The third model is based on the modified Hill’s yield criterion (for anisotropic materials) and a power law constitutive equation that considers the strain hardening exponent. The current developed model is a generalized model which is formulated on the basis of the modified Hill yield criterion and a power law constitutive equation considering the effect of strain rate. A new controlling parameter (γ) for the limit strains was exploited. This parameter presents the rate of change of strain rate with respect to strain. As γ increases the level of the FLD raises indicating a better formability of the material.


Author(s):  
Ali Rizvi ◽  
Chul B. Park

In this study we present a comprehensive experimental investigation of the effect of polymer blending on the dispersed phase morphology and how the dispersed phase morphology influences the foaming behavior of the semicrystalline polymer matrix using three different material combinations: polyethylene (PE)/polypropylene (PP), PP/polyethylene terephthalate (PET) and PP/polytetrafluoroethylene (PTFE). Samples are prepared such that the dispersed phase domains exhibit either spherical or fibrillated morphologies. Measurements of the uniaxial extensional viscosity, linear viscoelastic properties and crystallization kinetics under ambient pressures and elevated pressures of carbon dioxide (CO2) are performed and the morphological features are identified with the aid of SEM. Batch foaming and lab-scale extrusion foaming experiments are performed, as a screening model for polymer processing, to show the enhancement of the foaming ability as a result of the blend morphology, taking into account the rheological behaviour and the effects of crystallization kinetics. The formation of high aspect ratio fibrils imparts unique characteristics to the semicrystalline matrix such as strain-hardening in uniaxial extensional flow, prolonged relaxation times, pronounced elastic properties and enhanced kinetics of crystallization. In contrast, the regular blends containing spherical dispersed phase domains do not exhibit such properties. Foam processing of the three blends reveals a marked broadening of the foaming window when the dispersed phase domains are fibrillated due to the concurrent increase in crystallization kinetics, improved elastic properties and strain hardening in extensional flow.


2011 ◽  
Vol 221 ◽  
pp. 21-26
Author(s):  
Ti Kun Shan ◽  
Li Liu

An enhanced elastic-plastic constitutive equation taking into account strain induced transformation and its effect on work hardening of TRIP steel during deformation are investigated. The transformation rate relies on the stress triaxiality. The strain hardening of the TRIP steel takes on parabola shape because of the austenite changed to the martensite during straining. The physical model is verified by comparing with the stress-strain relation of the uniaxial tension experiment. The results showed that the steel keeps a high hardening potential which retards the onset of necking and a good formability thanks to the martensitic strain-induced transformation and the subsequent austenite hardening.


2014 ◽  
Vol 621 ◽  
pp. 82-87
Author(s):  
Lin Chao An ◽  
Xue Li Cheng

The relationship between N and strain hardening exponent curve are obtained by the tensile test of the stainless steel, low carbon steel, medium manganese steel under the ultrasonic action, it is concluded that hardening exponent n of low carbon steel is constant; Hardening exponent N stainless steel has a certain relation with the strain, show the parabolic variation; Strain index N and strain of high manganese steel is linear change. Establish the constitutive equation of low carbon steel under normal and ultrasonic frequency, This equation provides a theoretical basis for the tensile test of low carbon steel, provided with guiding significance and reference value for the application of low carbon steel in engineering practice.


1970 ◽  
Vol 44 (1) ◽  
pp. 65-78 ◽  
Author(s):  
N. A. Frankel ◽  
Andreas Acrivos

A constitutive equation for dilute emulsions is developed by considering the deformations, assumed infinitesimal, of a small droplet freely suspended in a time-dependent shearing flow. This equation is non-linear in the kinematic variables and gives rise to ‘fluid memory’ effects attributable to the droplet surface dynamics. Furthermore, it has the same form as the corresponding expression for a dilute suspension of Hookean elastic spheres (Goddard & Miller 1967), and reduces to a relation previously proposed by Schowalter, Chaffey & Brenner (1968) when time-dependent effects become small.Numerical solutions are also presented for the case of a small bubble in a steady extensional flow for the purpose of estimating the range of validity of the small deformation analysis. It is shown that, unlike the drag of a bubble which, in creeping motion, is known to be relatively insensitive to its exact shape, the macroscopic stress field in an emulsion is not well described by the present analysis unless the shapes of the deformed bubbles agree closely with those given by the first-order theory. Thus, the present rheological equation should prove of value in a qualitative rather than a quantitative sense.


Sign in / Sign up

Export Citation Format

Share Document