A physically based continuum damage mechanics model for thin laminated composite structures

2003 ◽  
Vol 40 (9) ◽  
pp. 2267-2300 ◽  
Author(s):  
Kevin V. Williams ◽  
Reza Vaziri ◽  
Anoush Poursartip
2013 ◽  
Vol 683 ◽  
pp. 176-181
Author(s):  
Yong Chen ◽  
Bao Jun Pang ◽  
Wei Zheng

In order to establish an elastic damage model for S2-glass/epoxy composite and identify the input parameters, in-plane behaviour of the composite including tensile, compression and tensile shear were investigated through series of tests. Concerning no plasticity, a simple elastic ply damage mechanics model for this composite was characterized based on Continuum Damage Mechanics Model (CDM) and the input parameters were obtained. The model was then implemented into ABAQUS/EXPLICT and the results show the model can capture most of the in-plane behaviour of the composite material.


Author(s):  
C Ó Murchú ◽  
SB Leen ◽  
PE O’Donoghue ◽  
RA Barrett

A multiaxial, physically based, continuum damage mechanics methodology for creep of welded 9Cr steels is presented, incorporating a multiple precipitate-type state variable, which simulates the effects of strain- and temperature-induced coarsening kinematics. Precipitate volume fraction and initial diameter for carbide and carbo-nitride precipitate types are key microstructural variables controlling time to failure in the model. The heat-affected zone material is simulated explicitly utilising measured microstructural data, allowing detailed investigation of failure mechanisms. Failure is shown to be controlled by a combination of microstructural degradation and Kachanov-type damage for the formation and growth of creep cavities. Comparisons with experimental data demonstrate the accuracy of this model for P91 material.


Author(s):  
A Nayebi ◽  
H Rokhgireh ◽  
M Araghi ◽  
M Mohammadi

Additively manufactured parts often comprise internal porosities due to the manufacturing process, which needs to be considered in modelling their mechanical behaviour. It was experimentally shown that additively manufactured parts’ tensile and compressive mechanical properties are different for various metallic alloys. In this study, isotropic continuum damage mechanics is used to model additively manufactured alloys’ tension and compression behaviours. Compressive stress components can shrink discontinuities present in additively manufactured alloys. Therefore, the crack closure effect was employed to describe different behaviours during uniaxial tension and compression tests. A finite element model embedded in an ABAQUS’s UMAT format was developed to account for the isotropic continuum damage mechanics model. The numerical results of tension and compression tests were compared with experimental observations for additively manufactured maraging steel, AlSi10Mg and Ti-6Al-4V. Stress–strain curves in tension and compression of these alloys were obtained using the continuum damage mechanics model and compared well with the experimental results.


Author(s):  
Sahar Ghatrehsamani ◽  
Saleh Akbarzadeh

Wear coefficient and friction coefficient are two of the key parameters in the performance of any tribo-system. The main purpose of the present research is to use continuum damage mechanics to predict wear coefficient. Thus, a contact model is utilized that can be used to obtain the friction coefficient between the contacting surfaces. By applying this model to the continuum damage mechanics model, the wear coefficient between dry surfaces is predicted. One of the advantages of using this model is that the wear coefficient can be numerically predicted unlike other methods which highly rely on experimental data. In order to verify the results predicted by this model, tests were performed using pin-on-disk test rig for several ST37 samples. The results indicated that the wear coefficient increases with increasing the friction coefficient.


Sign in / Sign up

Export Citation Format

Share Document