High-frequency natural oscillations of mechanical systems

2000 ◽  
Vol 64 (5) ◽  
pp. 783-796 ◽  
Author(s):  
L.D. Akulenko
Author(s):  
V.P. Radin ◽  
V.P. Chirkov ◽  
A.V. Shchugorev ◽  
V.N. Shchugorev

Methods for determining critical values of nonconservative loads in stability problems of mechanical systems with distributed parameters are considered in this work. Based on a dynamic approach to stability problems, the method of direct integration of the linearized equation of perturbed motion is proposed, and the problem of determining critical loads is reduced to the problem of minimizing a complex function of several variables. As a second method, the method of decomposition of the solution of the equation of perturbed motion in the forms of natural oscillations is presented. The fundamentals of the application of the finite element method to the problems of stability under the action of non-conservative loads are also described. The methods are illustrated on classical problems: the stability of the cantilever rod under the action of potential and tracking forces and the stability of the pipeline section with flowing liquid. The accuracy and convergence of the latter two methods are analyzed depending on the number of members in the series and the number of finite elements.


Author(s):  
Sevak Tahmasian

This paper discusses the averaging, control authority, and vibrational control of mechanical control-affine systems with high-frequency, high-amplitude inputs. The inputs have different frequencies of the same order. This work is an extension of the existing averaging method for high-frequency mechanical systems with single-frequency inputs. Vibrational control authority of mechanical control-affine systems is introduced, and the effects of inputs' waveform and frequency on vibrational control authority are investigated. The results show that, in general, using multifrequency inputs may result in lower control authority of mechanical systems compared to single-frequency inputs, especially when using harmonic inputs. The results on vibrational control authority of the systems with multifrequency inputs are demonstrated using vibrational control of a horizontal pendulum with two inputs. This paper also discusses the averaging of multiple-time-scale control systems.


2014 ◽  
Vol 05 (19) ◽  
pp. 3018-3025 ◽  
Author(s):  
Safarov Ismail Ibrahimovich ◽  
Teshaev Muhsin Hudoyberdievich ◽  
Madjidov Maqsud

Author(s):  
Sevak Tahmasian ◽  
Craig A. Woolsey

This paper presents a control design technique which enables approximate reference trajectory tracking for a class of underactuated mechanical systems. The control law comprises two terms. The first involves feedback of the trajectory tracking error in the actuated coordinates. Building on the concept of vibrational control, the second term imposes high-frequency periodic inputs that are modulated by the tracking error in the unactuated coordinates. Under appropriate conditions on the system structure and the commanded trajectory, and with sufficient separation between the time scales of the vibrational forcing and the commanded trajectory, the approach provides convergence in both the actuated and unactuated coordinates. The procedure is first described for a two degree-of-freedom (DOF) system with one input. Generalizing to higher-dimensional, underactuated systems, the approach is then applied to a 4DOF system with two inputs. A final example involves control of a rigid plate that is flapping in a uniform flow, a 3DOF system with one input. More general applications include biomimetic locomotion systems, such as underwater vehicles with articulating fins and flapping wing micro-air vehicles.


2021 ◽  
pp. 084-091
Author(s):  
Gavasheli Levan ◽  
Gavasheli Anri

The article analyzes random vibrations of nonlinear mechanical systems with distributed parameters. The motion of such systems is described by nonlinear partial differential equations with corresponding initial and boundary conditions. In our case, the system as a whole is limited, so any motion can be considered as the sum of the natural oscillations of the system, i.e. in the form of an expansion of the boundary value problem in terms of own functions. The use of the theory of random processes in the calculation of mechanical systems is a prerequisite for the creation of sound design methods and the creation of effective vibration protection devices, these methods allow us to investigate dynamic processes, to determine the probabilistic characteristics of displacements of points of the system and their first two derivatives. In the work established these conditions are met, they provide effective vibration protection of the system under study with wide changes in the pass band of the frequencies of the random vibration effect, and the frequency of the disturbing force is much greater than the natural frequency of the system as a whole, in addition, with an increase in the damping capacity of the elastic-damping link of the system, the intensity of the random process significantly decreases, which in turn leads to a sharp decrease in the dynamic coefficient of the system.


Sign in / Sign up

Export Citation Format

Share Document